Graph Fourier MMD for Signals on Graphs
- URL: http://arxiv.org/abs/2306.02508v1
- Date: Mon, 5 Jun 2023 00:01:17 GMT
- Title: Graph Fourier MMD for Signals on Graphs
- Authors: Samuel Leone, Aarthi Venkat, Guillaume Huguet, Alexander Tong, Guy
Wolf, Smita Krishnaswamy
- Abstract summary: We propose a novel distance between distributions and signals on graphs.
GFMMD is defined via an optimal witness function that is both smooth on the graph and maximizes difference in expectation.
We showcase it on graph benchmark datasets as well as on single cell RNA-sequencing data analysis.
- Score: 67.68356461123219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While numerous methods have been proposed for computing distances between
probability distributions in Euclidean space, relatively little attention has
been given to computing such distances for distributions on graphs. However,
there has been a marked increase in data that either lies on graph (such as
protein interaction networks) or can be modeled as a graph (single cell data),
particularly in the biomedical sciences. Thus, it becomes important to find
ways to compare signals defined on such graphs. Here, we propose Graph Fourier
MMD (GFMMD), a novel distance between distributions and signals on graphs.
GFMMD is defined via an optimal witness function that is both smooth on the
graph and maximizes difference in expectation between the pair of distributions
on the graph. We find an analytical solution to this optimization problem as
well as an embedding of distributions that results from this method. We also
prove several properties of this method including scale invariance and
applicability to disconnected graphs. We showcase it on graph benchmark
datasets as well on single cell RNA-sequencing data analysis. In the latter, we
use the GFMMD-based gene embeddings to find meaningful gene clusters. We also
propose a novel type of score for gene selection called "gene localization
score" which helps select genes for cellular state space characterization.
Related papers
- Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Conditional Diffusion Based on Discrete Graph Structures for Molecular
Graph Generation [32.66694406638287]
We propose a Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation.
Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through differential equations (SDE)
We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states.
arXiv Detail & Related papers (2023-01-01T15:24:15Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Embedding Graphs on Grassmann Manifold [31.42901131602713]
This paper develops a new graph representation learning scheme, namely EGG, which embeds approximated second-order graph characteristics into a Grassmann manifold.
The effectiveness of EGG is demonstrated using both clustering and classification tasks at the node level and graph level.
arXiv Detail & Related papers (2022-05-30T12:56:24Z) - Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth
Mover's Distance [63.203951161394265]
In modern machine learning it is common to encounter large graphs that arise via interactions or similarities between observations in many domains.
We propose to compare and organize such datasets of graph signals by using an earth mover's distance (EMD) with a geodesic cost over the underlying graph.
In each case, we show that UDEMD-based embeddings find accurate distances that are highly efficient compared to other methods.
arXiv Detail & Related papers (2021-07-26T17:19:02Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) have proven to be successful tools for semi-supervised classification on graph-based datasets.
We propose a new GCN variant whose three-part filter space is targeted at dense graphs.
arXiv Detail & Related papers (2020-08-03T08:48:41Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.