Certification of non-Gaussian states with operational measurements
- URL: http://arxiv.org/abs/2011.04320v1
- Date: Mon, 9 Nov 2020 10:43:35 GMT
- Title: Certification of non-Gaussian states with operational measurements
- Authors: Ulysse Chabaud, Gana\"el Roeland, Mattia Walschaers, Fr\'ed\'eric
Grosshans, Valentina Parigi, Damian Markham and Nicolas Treps
- Abstract summary: We rank experimental non-Gaussian states according to the recently defined stellar hierarchy.
We simulate various use-cases ranging from fidelity estimation to witnessing Wigner negativity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive a theoretical framework for the experimental certification of
non-Gaussian features of quantum states using double homodyne detection. We
rank experimental non-Gaussian states according to the recently defined stellar
hierarchy and we propose practical Wigner negativity witnesses. We simulate
various use-cases ranging from fidelity estimation to witnessing Wigner
negativity. Moreover, we extend results on the robustness of the stellar
hierarchy of non-Gaussian states. Our results illustrate the usefulness of
double homodyne detection as a practical measurement scheme for retrieving
information about continuous variable quantum states.
Related papers
- Certification of non-Gaussian Einstein-Podolsky-Rosen Steering [2.9290107337630613]
We present an efficient non-Gaussian steering criterion based on the high-order observables.
We propose a feasible scheme to create multi-component cat states with tunable size.
Our work reveals the fundamental characteristics of non-Gaussianity and quantum correlations.
arXiv Detail & Related papers (2023-08-26T12:57:22Z) - Quantum randomness certification with untrusted measurements and few
probe states [0.0]
We present a scheme for quantum random-number generation from an untrusted measurement device and a trusted source.
No assumptions about noise or imperfections in the measurement are required, and the scheme is simple to implement with existing technology.
We show that randomness can be certified in the presence of both Gaussian additive noise and non-Gaussian imperfections.
arXiv Detail & Related papers (2022-10-24T21:18:22Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Homodyne detection of non-Gaussian quantum steering [0.0]
We propose a protocol based on Fisher information for witnessing steering in general continuous-variable bipartite states.
It proves to be relevant for the detection of non-Gaussian steering in scenarios where witnesses based on Gaussian features like the covariance matrix are shown to fail.
arXiv Detail & Related papers (2022-01-27T10:53:25Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Experimental certification of nonclassicality via phase-space
inequalities [58.720142291102135]
We present the first experimental implementation of the recently introduced phase-space inequalities for nonclassicality certification.
We demonstrate the practicality and sensitivity of this approach by studying nonclassicality of a family of noisy and lossy quantum states of light.
arXiv Detail & Related papers (2020-10-01T09:03:52Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Verifying single-mode nonclassicality beyond negativity in phase space [0.0]
We establish a framework of nonclassicality in phase space that addresses nonclassical states comprehensively.
We prove that it detects all nonclassical Gaussian states and all non-Gaussian states of arbitrary dimension remarkably.
This approach can be adapted to constitute practical tests in two directions looking into particle and wave nature of bosonic systems.
arXiv Detail & Related papers (2020-05-12T13:12:14Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.