論文の概要: MAGNeto: An Efficient Deep Learning Method for the Extractive Tags
Summarization Problem
- arxiv url: http://arxiv.org/abs/2011.04349v1
- Date: Mon, 9 Nov 2020 11:34:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 00:17:18.453589
- Title: MAGNeto: An Efficient Deep Learning Method for the Extractive Tags
Summarization Problem
- Title(参考訳): MAGNeto:抽出タグ要約問題に対する効率的なディープラーニング手法
- Authors: Hieu Trong Phung (1 and 2), Anh Tuan Vu (1), Tung Dinh Nguyen (1), Lam
Thanh Do (1 and 2), Giang Nam Ngo (1), Trung Thanh Tran (1) and Ngoc C. L\^e
(1 and 2) ((1) PIXTA Vietnam, Hanoi, Vietnam. (2) Hanoi University of Science
and Technology, Ha Noi, Viet Nam.)
- Abstract要約: 抽出タグ要約(ETS)と呼ばれる新しい画像アノテーションタスクについて検討する。
ゴールは、画像とその対応するタグに横たわるコンテキストから重要なタグを抽出することである。
提案手法は,畳み込み層や自己注意層など,広く使用されているブロックで構成されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study a new image annotation task named Extractive Tags
Summarization (ETS). The goal is to extract important tags from the context
lying in an image and its corresponding tags. We adjust some state-of-the-art
deep learning models to utilize both visual and textual information. Our
proposed solution consists of different widely used blocks like convolutional
and self-attention layers, together with a novel idea of combining auxiliary
loss functions and the gating mechanism to glue and elevate these fundamental
components and form a unified architecture. Besides, we introduce a loss
function that aims to reduce the imbalance of the training data and a simple
but effective data augmentation technique dedicated to alleviates the effect of
outliers on the final results. Last but not least, we explore an unsupervised
pre-training strategy to further boost the performance of the model by making
use of the abundant amount of available unlabeled data. Our model shows the
good results as 90% $F_\text{1}$ score on the public NUS-WIDE benchmark, and
50% $F_\text{1}$ score on a noisy large-scale real-world private dataset.
Source code for reproducing the experiments is publicly available at:
https://github.com/pixta-dev/labteam
- Abstract(参考訳): 本研究では,抽出タグ要約(ETS)と呼ばれる新しい画像アノテーションタスクについて検討する。
ゴールは、画像とその対応するタグに横たわるコンテキストから重要なタグを抽出することである。
視覚情報とテキスト情報の両方を活用するために,最先端のディープラーニングモデルをいくつか調整する。
提案手法は, 畳み込み層や自己アテンション層など, 広く使用されているブロックで構成され, 補助損失関数とゲーティング機構を組み合わせることで, 基本成分を接着・高め, 統一アーキテクチャを形成する。
さらに,トレーニングデータの不均衡を軽減することを目的とした損失関数と,最終結果に対する外れ値の影響を軽減するための簡易かつ効果的なデータ拡張手法を導入する。
最後に、利用可能な大量のラベルのないデータを利用することで、モデルの性能をさらに向上するための教師なし事前学習戦略を検討する。
我々のモデルは、公開NUS-WIDEベンチマークで90%$F_\text{1}$スコア、ノイズの多い大規模実世界のプライベートデータセットで50%$F_\text{1}$スコアを示す。
実験を再現するためのソースコードは、https://github.com/pixta-dev/labteamで公開されている。
関連論文リスト
- Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
より少ないアノテーションで医用画像のセグメンテーションを行うための平均教師ネットワーク上に構築されたPLGDFフレームワークを提案する。
本稿では,ラベル付きデータとラベルなしデータを組み合わせてデータセットを効果的に拡張する,新しい擬似ラベル利用方式を提案する。
本フレームワークは,最先端の6つの半教師あり学習手法と比較して,優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-17T06:36:43Z) - DatasetEquity: Are All Samples Created Equal? In The Quest For Equity
Within Datasets [4.833815605196965]
本稿では,機械学習におけるデータ不均衡に対処する新しい手法を提案する。
深い知覚埋め込みとクラスタリングを用いて、画像の外観に基づいてサンプル確率を計算する。
次に、これらの可能性を使って、提案された$bf Generalized Focal Loss$関数で、トレーニング中にサンプルを異なる重さで測定する。
論文 参考訳(メタデータ) (2023-08-19T02:11:49Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
これらの問題に対処するための一般的な学習可能なグラフマッチング法を提案する。
提案手法は,複数のMOTデータセット上での最先端性能を実現する。
画像マッチングでは,一般的な屋内データセットであるScanNetで最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-03-27T17:39:00Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
我々は、Model-Aware K-center (MAK)と呼ばれるオープンワールドなラベルなしデータサンプリングフレームワークを提案する。
MAKは、尾性、近接性、多様性の3つの単純な原則に従う。
我々はMAKが学習した機能の全体的な表現品質とクラスバランス性の両方を継続的に改善できることを実証した。
論文 参考訳(メタデータ) (2021-11-01T15:09:41Z) - C$^{4}$Net: Contextual Compression and Complementary Combination Network
for Salient Object Detection [0.0]
機能結合は、乗算や加算のような他の組み合わせ方法よりもうまく機能することを示す。
また、共同特徴学習は、処理中の情報共有のため、より良い結果をもたらす。
論文 参考訳(メタデータ) (2021-10-22T16:14:10Z) - Jointly Learnable Data Augmentations for Self-Supervised GNNs [0.311537581064266]
本稿では,グラフ表現学習のための自己教師型学習手法であるGraphSurgeonを提案する。
学習可能なデータ拡張の柔軟性を活用し、埋め込み空間で強化する新しい戦略を導入する。
その結果,GraphSurgeonは6つのSOTA半教師付きベースラインに匹敵し,ノード分類タスクにおける5つのSOTA自己教師付きベースラインに匹敵することがわかった。
論文 参考訳(メタデータ) (2021-08-23T21:33:12Z) - Hierarchical Self-Supervised Learning for Medical Image Segmentation
Based on Multi-Domain Data Aggregation [23.616336382437275]
医用画像分割のための階層型自己監督学習(HSSL)を提案する。
まず、いくつかの医学的課題からデータセットを収集し、自己教師付きでネットワークを事前訓練し、最後にラベル付きデータに微調整します。
スクラッチから学習するのに比べ、新しい手法は様々なタスクにおいてより良いパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2021-07-10T18:17:57Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
多数の画像の分類ラベルを収集するための効率的なアノテーション戦略を検討する。
人間のラベリング作業を最小化するための修正とベストプラクティスを提案します。
ImageNet100の125kイメージサブセットのシミュレーション実験では、平均で0.35のアノテーションで80%のトップ-1の精度でアノテートできることが示されている。
論文 参考訳(メタデータ) (2021-04-26T16:29:32Z) - How to distribute data across tasks for meta-learning? [59.608652082495624]
タスクごとのデータポイントの最適な数は予算に依存しますが、それは大きな予算のためのユニークな一定の値に収束します。
この結果から,データ収集の簡便かつ効率的な手順が示唆された。
論文 参考訳(メタデータ) (2021-03-15T15:38:47Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。