R-DMFT study of a non-Hermitian skin effect for correlated systems:
analysis based on a pseudo-spectrum
- URL: http://arxiv.org/abs/2011.04379v2
- Date: Tue, 10 Nov 2020 08:41:07 GMT
- Title: R-DMFT study of a non-Hermitian skin effect for correlated systems:
analysis based on a pseudo-spectrum
- Authors: Tsuneya Yoshida
- Abstract summary: We analyze a correlated system in equilibrium with special emphasis on non-Hermitian topology inducing a skin effect.
The pseudo-spectrum, computed by the real-space dynamical mean-field theory, elucidates that additional pseudo-eigenstates emerge for the open boundary condition.
We discuss how the line-gap topology, another type of non-Hermitian topology, affects the pseudo-spectrum.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze a correlated system in equilibrium with special emphasis on
non-Hermitian topology inducing a skin effect. The pseudo-spectrum, computed by
the real-space dynamical mean-field theory, elucidates that additional
pseudo-eigenstates emerge for the open boundary condition in contrast to the
dependence of the density of states on the boundary condition. We further
discuss how the line-gap topology, another type of non-Hermitian topology,
affects the pseudo-spectrum. Our numerical simulation clarifies that while the
damping of the quasi-particles induces the non-trivial point-gap topology, it
destroys the non-trivial line-gap topology. The above two effects are also
reflected in the temperature dependence of the local pseudo-spectral weight.
Related papers
- Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Anomalous second-order skin modes in Floquet non-Hermitian systems [6.001217436402815]
The non-Hermitian skin effect under open boundary conditions is widely believed to originate from the intrinsic spectral topology under periodic boundary conditions.
We show that the Floquet Hamiltonian exhibits a second-order skin effect that is robust against perturbations and disorder under open boundary conditions.
arXiv Detail & Related papers (2023-03-20T16:44:33Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Reduction of one-dimensional non-Hermitian point-gap topology by
correlations [0.0]
We analyze correlated non-Hermitian systems with special emphasis on the one-dimensional point-gap topology.
Our analysis elucidates that correlations result in reduction of the topological classification $mathbbZtimes mathbbZ to mathbbZ$ for systems of one synthetic dimension.
arXiv Detail & Related papers (2022-05-19T06:07:34Z) - Liouvillian Skin Effect in an Exactly Solvable Model [3.803244458097104]
We find that the sensitivity on the boundary conditions associated with the non-Hermitian skin effect is directly reflected in the rapidities governing the time evolution of the density matrix.
This leads to several intriguing phenomena including boundary sensitive damping behavior, steady state currents in finite periodic systems, and diverging relaxation times in the limit of large systems.
arXiv Detail & Related papers (2022-03-02T19:00:01Z) - Locality of Spontaneous Symmetry Breaking and Universal Spacing
Distribution of Topological Defects Formed Across a Phase Transition [62.997667081978825]
A continuous phase transition results in the formation of topological defects with a density predicted by the Kibble-Zurek mechanism (KZM)
We characterize the spatial distribution of point-like topological defects in the resulting nonequilibrium state and model it using a Poisson point process in arbitrary spatial dimension with KZM density.
arXiv Detail & Related papers (2022-02-23T19:00:06Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Observation of non-Hermitian topological Anderson insulator in quantum
dynamics [8.119496606443793]
Disorder and non-Hermiticity dramatically impact the topological and localization properties of a quantum system.
We experimentally simulate the non-Hermitian topological Anderson insulator using disordered photonic quantum walks.
arXiv Detail & Related papers (2021-08-02T18:00:18Z) - Point-gap topology with complete bulk-boundary correspondence in
dissipative quantum systems [0.0]
The spectral and dynamical properties of dissipative quantum systems are investigated from a topological point of view.
We find anomalous skin modes with exponential amplification even though the quantum system is purely dissipative.
arXiv Detail & Related papers (2020-10-28T10:15:40Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.