Anomalous second-order skin modes in Floquet non-Hermitian systems
- URL: http://arxiv.org/abs/2303.11259v2
- Date: Wed, 22 Nov 2023 17:39:54 GMT
- Title: Anomalous second-order skin modes in Floquet non-Hermitian systems
- Authors: Chun-Hui Liu, Haiping Hu, Shu Chen, Xiong-Jun Liu
- Abstract summary: The non-Hermitian skin effect under open boundary conditions is widely believed to originate from the intrinsic spectral topology under periodic boundary conditions.
We show that the Floquet Hamiltonian exhibits a second-order skin effect that is robust against perturbations and disorder under open boundary conditions.
- Score: 6.001217436402815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The non-Hermitian skin effect under open boundary conditions is widely
believed to originate from the intrinsic spectral topology under periodic
boundary conditions. If the eigenspectra under periodic boundary conditions
have no spectral windings (e.g., piecewise arcs) or a finite area on the
complex plane, there will be no non-Hermitian skin effect with open boundaries.
In this article, we demonstrate another scenario beyond this perception by
introducing a two-dimensional periodically driven model. The effective Floquet
Hamiltonian lacks intrinsic spectral topology and is proportional to the
identity matrix (representing a single point on the complex plane) under
periodic boundary conditions. Yet, the Floquet Hamiltonian exhibits a
second-order skin effect that is robust against perturbations and disorder
under open boundary conditions. We further reveal the dynamical origin of these
second-order skin modes and illustrate that they are characterized by a
dynamical topological invariant of the full time-evolution operator.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Spectral structure and doublon dissociation in the two-particle
non-Hermitian Hubbard model [0.0]
We consider a non-Hermitian Hubbard model, where the single-particle hopping amplitudes on the lattice are not reciprocal.
The analysis unveils some interesting spectral and dynamical effects of purely non-Hermitian nature.
arXiv Detail & Related papers (2023-08-08T18:12:15Z) - Observation of non-Hermitian edge burst in quantum dynamics [4.836111090297333]
We experimentally observe a boundary-induced dynamical phenomenon known as the non-Hermitian edge burst.
In contrast to the eigenstate localization, the edge burst represents a generic non-Hermitian dynamical phenomenon that occurs in real time.
arXiv Detail & Related papers (2023-03-22T18:00:02Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Liouvillian Skin Effect in an Exactly Solvable Model [3.803244458097104]
We find that the sensitivity on the boundary conditions associated with the non-Hermitian skin effect is directly reflected in the rapidities governing the time evolution of the density matrix.
This leads to several intriguing phenomena including boundary sensitive damping behavior, steady state currents in finite periodic systems, and diverging relaxation times in the limit of large systems.
arXiv Detail & Related papers (2022-03-02T19:00:01Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - R-DMFT study of a non-Hermitian skin effect for correlated systems:
analysis based on a pseudo-spectrum [0.0]
We analyze a correlated system in equilibrium with special emphasis on non-Hermitian topology inducing a skin effect.
The pseudo-spectrum, computed by the real-space dynamical mean-field theory, elucidates that additional pseudo-eigenstates emerge for the open boundary condition.
We discuss how the line-gap topology, another type of non-Hermitian topology, affects the pseudo-spectrum.
arXiv Detail & Related papers (2020-11-09T12:26:55Z) - Point-gap topology with complete bulk-boundary correspondence in
dissipative quantum systems [0.0]
The spectral and dynamical properties of dissipative quantum systems are investigated from a topological point of view.
We find anomalous skin modes with exponential amplification even though the quantum system is purely dissipative.
arXiv Detail & Related papers (2020-10-28T10:15:40Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.