Combining Propositional Logic Based Decision Diagrams with Decision
Making in Urban Systems
- URL: http://arxiv.org/abs/2011.04405v2
- Date: Tue, 10 Nov 2020 05:46:56 GMT
- Title: Combining Propositional Logic Based Decision Diagrams with Decision
Making in Urban Systems
- Authors: Jiajing Ling, Kushagra Chandak, Akshat Kumar
- Abstract summary: We tackle the problem of multiagent pathfinding under uncertainty and partial observability.
We use propositional logic and integrate them with the RL algorithms to enable fast simulation for RL.
- Score: 10.781866671930851
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving multiagent problems can be an uphill task due to uncertainty in the
environment, partial observability, and scalability of the problem at hand.
Especially in an urban setting, there are more challenges since we also need to
maintain safety for all users while minimizing congestion of the agents as well
as their travel times. To this end, we tackle the problem of multiagent
pathfinding under uncertainty and partial observability where the agents are
tasked to move from their starting points to ending points while also
satisfying some constraints, e.g., low congestion, and model it as a multiagent
reinforcement learning problem. We compile the domain constraints using
propositional logic and integrate them with the RL algorithms to enable fast
simulation for RL.
Related papers
- Agentic LLMs in the Supply Chain: Towards Autonomous Multi-Agent Consensus-Seeking [39.373512037111155]
Large Language Models (LLMs) can automate consensus-seeking in supply chain management (SCM)
Traditional SCM relies on human consensus in decision-making to avoid emergent problems like the bullwhip effect.
Recent advances in Generative AI, particularly LLMs, show promise in overcoming these barriers.
arXiv Detail & Related papers (2024-11-15T13:33:10Z) - DePAint: A Decentralized Safe Multi-Agent Reinforcement Learning Algorithm considering Peak and Average Constraints [1.1549572298362787]
We propose a momentum-based decentralized gradient policy method, DePAint, to solve the problem.
This is the first privacy-preserving fully decentralized multi-agent reinforcement learning algorithm that considers both peak and average constraints.
arXiv Detail & Related papers (2023-10-22T16:36:03Z) - Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning [48.667697255912614]
Mean-field reinforcement learning addresses the policy of a representative agent interacting with the infinite population of identical agents.
We propose Safe-M$3$-UCRL, the first model-based mean-field reinforcement learning algorithm that attains safe policies even in the case of unknown transitions.
Our algorithm effectively meets the demand in critical areas while ensuring service accessibility in regions with low demand.
arXiv Detail & Related papers (2023-06-29T15:57:07Z) - Faith and Fate: Limits of Transformers on Compositionality [109.79516190693415]
We investigate the limits of transformer large language models across three representative compositional tasks.
These tasks require breaking problems down into sub-steps and synthesizing these steps into a precise answer.
Our empirical findings suggest that transformer LLMs solve compositional tasks by reducing multi-step compositional reasoning into linearized subgraph matching.
arXiv Detail & Related papers (2023-05-29T23:24:14Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - DC-MRTA: Decentralized Multi-Robot Task Allocation and Navigation in
Complex Environments [55.204450019073036]
We present a novel reinforcement learning based task allocation and decentralized navigation algorithm for mobile robots in warehouse environments.
We consider the problem of joint decentralized task allocation and navigation and present a two level approach to solve it.
We observe improvement up to 14% in terms of task completion time and up-to 40% improvement in terms of computing collision-free trajectories for the robots.
arXiv Detail & Related papers (2022-09-07T00:35:27Z) - Location-routing Optimisation for Urban Logistics Using Mobile Parcel
Locker Based on Hybrid Q-Learning Algorithm [0.0]
Parcel lockers (MPLs) have been introduced by urban logistics operators as a means to reduce traffic congestion and operational cost.
This paper proposes an integer programming model to solve the Location Routing Problem for MPLs.
arXiv Detail & Related papers (2021-10-29T01:27:12Z) - Fast Decomposition of Temporal Logic Specifications for Heterogeneous
Teams [1.856334276134661]
We focus on decomposing large multi-agent path planning problems into smaller sub-problems that can be solved and executed independently.
The agents' missions are given as Capability Temporal Logic (CaTL) formulas, a fragment of signal temporal logic.
The approach we take is to decompose both the temporal logic specification and the team of agents.
arXiv Detail & Related papers (2020-09-30T18:04:39Z) - Jump Operator Planning: Goal-Conditioned Policy Ensembles and Zero-Shot
Transfer [71.44215606325005]
We propose a novel framework called Jump-Operator Dynamic Programming for quickly computing solutions within a super-exponential space of sequential sub-goal tasks.
This approach involves controlling over an ensemble of reusable goal-conditioned polices functioning as temporally extended actions.
We then identify classes of objective functions on this subspace whose solutions are invariant to the grounding, resulting in optimal zero-shot transfer.
arXiv Detail & Related papers (2020-07-06T05:13:20Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.