Maximizing Store Revenues using Tabu Search for Floor Space Optimization
- URL: http://arxiv.org/abs/2011.04422v1
- Date: Wed, 4 Nov 2020 22:42:54 GMT
- Title: Maximizing Store Revenues using Tabu Search for Floor Space Optimization
- Authors: Jiefeng Xu and Evren Gul and Alvin Lim
- Abstract summary: We formulate the problem as a connected multi-choice knapsack problem with an additional global constraint.
We propose a tabu search based meta-heuristic that exploits the multiple special neighborhood structures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Floor space optimization is a critical revenue management problem commonly
encountered by retailers. It maximizes store revenue by optimally allocating
floor space to product categories which are assigned to their most appropriate
planograms. We formulate the problem as a connected multi-choice knapsack
problem with an additional global constraint and propose a tabu search based
meta-heuristic that exploits the multiple special neighborhood structures. We
also incorporate a mechanism to determine how to combine the multiple
neighborhood moves. A candidate list strategy based on learning from prior
search history is also employed to improve the search quality. The results of
computational testing with a set of test problems show that our tabu search
heuristic can solve all problems within a reasonable amount of time. Analyses
of individual contributions of relevant components of the algorithm were
conducted with computational experiments.
Related papers
- Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
We introduce a novel greedy-style subset selection algorithm for batch acquisition.
Our experiments on the red fluorescent proteins show that our proposed method achieves the baseline performance in 1.69x fewer queries.
arXiv Detail & Related papers (2024-06-21T05:57:08Z) - Exploratory Landscape Analysis for Mixed-Variable Problems [0.7252027234425334]
We provide the means to compute exploratory landscape features for mixed-variable problems where the decision space is a mixture of continuous, binary, integer, and categorical variables.
To further highlight their merit for practical applications, we design and conduct an automated algorithm selection study.
Our trained algorithm selector is able to close the gap between the single best and the virtual best solver by 57.5% over all benchmark problems.
arXiv Detail & Related papers (2024-02-26T10:19:23Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - A machine learning framework for neighbor generation in metaheuristic
search [4.521119623956821]
We propose a general machine learning framework for neighbor generation in metaheuristic search.
We validate our methodology on two metaheuristic applications.
arXiv Detail & Related papers (2022-12-22T01:58:04Z) - Efficient and Accurate Top-$K$ Recovery from Choice Data [1.14219428942199]
In some applications such as recommendation systems, the statistician is primarily interested in recovering the set of the top ranked items from a large pool of items.
We propose the choice-based Borda count algorithm as a fast and accurate ranking algorithm for top $K$-recovery.
We show that the choice-based Borda count algorithm has optimal sample complexity for top-$K$ recovery under a broad class of random utility models.
arXiv Detail & Related papers (2022-06-23T22:05:08Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Frequent Itemset-driven Search for Finding Minimum Node Separators in
Complex Networks [61.2383572324176]
We propose a frequent itemset-driven search approach, which integrates the concept of frequent itemset mining in data mining into the well-known memetic search framework.
It iteratively employs the frequent itemset recombination operator to generate promising offspring solution based on itemsets that frequently occur in high-quality solutions.
In particular, it discovers 29 new upper bounds and matches 18 previous best-known bounds.
arXiv Detail & Related papers (2022-01-18T11:16:40Z) - Multidimensional Assignment Problem for multipartite entity resolution [69.48568967931608]
Multipartite entity resolution aims at integrating records from multiple datasets into one entity.
We apply two procedures, a Greedy algorithm and a large scale neighborhood search, to solve the assignment problem.
We find evidence that design-based multi-start can be more efficient as the size of databases grow large.
arXiv Detail & Related papers (2021-12-06T20:34:55Z) - Optimizing Revenue while showing Relevant Assortments at Scale [1.0200170217746136]
Real-time assortment optimization has become essential in e-commerce operations.
We design fast and flexible algorithms that find the optimal assortment in difficult regimes.
Empirical validations using a real world dataset show that our algorithms are competitive even when the number of items is $sim 105$ ($10times$ larger instances than previously studied)
arXiv Detail & Related papers (2020-03-06T20:16:49Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.