Factorization of Multi-Agent Sampling-Based Motion Planning
- URL: http://arxiv.org/abs/2304.00342v1
- Date: Sat, 1 Apr 2023 15:50:18 GMT
- Title: Factorization of Multi-Agent Sampling-Based Motion Planning
- Authors: Alessandro Zanardi, Pietro Zullo, Andrea Censi, Emilio Frazzoli
- Abstract summary: Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
- Score: 72.42734061131569
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern robotics often involves multiple embodied agents operating within a
shared environment. Path planning in these cases is considerably more
challenging than in single-agent scenarios. Although standard Sampling-based
Algorithms (SBAs) can be used to search for solutions in the robots' joint
space, this approach quickly becomes computationally intractable as the number
of agents increases. To address this issue, we integrate the concept of
factorization into sampling-based algorithms, which requires only minimal
modifications to existing methods. During the search for a solution we can
decouple (i.e., factorize) different subsets of agents into independent
lower-dimensional search spaces once we certify that their future solutions
will be independent of each other using a factorization heuristic.
Consequently, we progressively construct a lean hypergraph where certain
(hyper-)edges split the agents to independent subgraphs. In the best case, this
approach can reduce the growth in dimensionality of the search space from
exponential to linear in the number of agents. On average, fewer samples are
needed to find high-quality solutions while preserving the optimality,
completeness, and anytime properties of SBAs. We present a general
implementation of a factorized SBA, derive an analytical gain in terms of
sample complexity for PRM*, and showcase empirical results for RRG.
Related papers
- Scalable Decentralized Algorithms for Online Personalized Mean Estimation [12.002609934938224]
This study focuses on a simplified version of the overarching problem, where each agent collects samples from a real-valued distribution over time to estimate its mean.
We introduce two collaborative mean estimation algorithms: one draws inspiration from belief propagation, while the other employs a consensus-based approach.
arXiv Detail & Related papers (2024-02-20T08:30:46Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
We study multi-agent reinforcement learning (MARL) for the general-sum Markov Games (MGs) under the general function approximation.
We introduce a novel complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for general-sum MGs.
We show that our algorithm provides comparable sublinear regret to the existing works.
arXiv Detail & Related papers (2023-10-10T01:39:04Z) - Partially Observable Multi-Agent Reinforcement Learning with Information Sharing [33.145861021414184]
We study provable multi-agent reinforcement learning (RL) in the general framework of partially observable games (POSGs)
We advocate leveraging the potential emph information-sharing among agents, a common practice in empirical multi-agent RL, and a standard model for multi-agent control systems with communications.
arXiv Detail & Related papers (2023-08-16T23:42:03Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Relational Reasoning via Set Transformers: Provable Efficiency and
Applications to MARL [154.13105285663656]
A cooperative Multi-A gent R einforcement Learning (MARL) with permutation invariant agents framework has achieved tremendous empirical successes in real-world applications.
Unfortunately, the theoretical understanding of this MARL problem is lacking due to the curse of many agents and the limited exploration of the relational reasoning in existing works.
We prove that the suboptimality gaps of the model-free and model-based algorithms are independent of and logarithmic in the number of agents respectively, which mitigates the curse of many agents.
arXiv Detail & Related papers (2022-09-20T16:42:59Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
We propose the mean-field proximal policy optimization (MF-PPO) algorithm, at the core of which is a permutation-invariant actor-critic neural architecture.
We prove that MF-PPO attains the globally optimal policy at a sublinear rate of convergence.
In particular, we show that the inductive bias introduced by the permutation-invariant neural architecture enables MF-PPO to outperform existing competitors.
arXiv Detail & Related papers (2021-05-18T04:35:41Z) - Multi-objective Conflict-based Search for Multi-agent Path Finding [10.354181009277623]
Multi-objective path planners typically compute an ensemble of paths while optimizing a single objective, such as path length.
This article presents an approach named Multi-objective Conflict-based Search (MO-CBS) that bypasses this so-called curse of dimensionality.
arXiv Detail & Related papers (2021-01-11T10:42:38Z) - Statistically Guided Divide-and-Conquer for Sparse Factorization of
Large Matrix [2.345015036605934]
We formulate the statistical problem as a sparse factor regression and tackle it with a divide-conquer approach.
In the first stage division, we consider both latent parallel approaches for simplifying the task into a set of co-parsesparserank estimation (CURE) problems.
In the second stage division, we innovate a stagewise learning technique, consisting of a sequence simple incremental paths, to efficiently trace out the whole solution of CURE.
arXiv Detail & Related papers (2020-03-17T19:12:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.