論文の概要: MPRNet: Multi-Path Residual Network for Lightweight Image Super
Resolution
- arxiv url: http://arxiv.org/abs/2011.04566v1
- Date: Mon, 9 Nov 2020 17:11:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 02:12:43.474990
- Title: MPRNet: Multi-Path Residual Network for Lightweight Image Super
Resolution
- Title(参考訳): MPRNet:軽量画像超解像のためのマルチパス残像ネットワーク
- Authors: Armin Mehri, Parichehr B.Ardakani, Angel D.Sappa
- Abstract要約: 軽量SRにおけるSOTA性能を向上させる軽量超解像ネットワークを提案する。
提案アーキテクチャには新たなアテンション機構であるTwo-Fold Attention Moduleが含まれており,モデルの表現能力を最大化することができる。
- 参考スコア(独自算出の注目度): 2.3576437999036473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lightweight super resolution networks have extremely importance for
real-world applications. In recent years several SR deep learning approaches
with outstanding achievement have been introduced by sacrificing memory and
computational cost. To overcome this problem, a novel lightweight super
resolution network is proposed, which improves the SOTA performance in
lightweight SR and performs roughly similar to computationally expensive
networks. Multi-Path Residual Network designs with a set of Residual
concatenation Blocks stacked with Adaptive Residual Blocks: ($i$) to adaptively
extract informative features and learn more expressive spatial context
information; ($ii$) to better leverage multi-level representations before
up-sampling stage; and ($iii$) to allow an efficient information and gradient
flow within the network. The proposed architecture also contains a new
attention mechanism, Two-Fold Attention Module, to maximize the representation
ability of the model. Extensive experiments show the superiority of our model
against other SOTA SR approaches.
- Abstract(参考訳): 軽量超解像ネットワークは現実世界のアプリケーションにとって極めて重要である。
近年、記憶と計算コストを犠牲にすることで、卓越した実績を持つSRディープラーニングアプローチがいくつか導入されている。
この問題を解決するために,軽量srにおけるsota性能を向上し,計算コストの高いネットワークとほぼ同様の性能を実現する,新しい軽量スーパーレゾリューションネットワークを提案する。
適応的な残差ブロックを積み重ねたマルチパス残差ネットワーク設計:(i$) 情報的特徴を適応的に抽出し、より表現力のある空間的コンテキスト情報を学ぶ;(ii$) アップサンプリングステージの前にマルチレベル表現をよりよく活用する;(iii$) ネットワーク内の効率的な情報と勾配フローを可能にする。
提案アーキテクチャには新たなアテンション機構であるTwo-Fold Attention Moduleが含まれており,モデルの表現能力を最大化することができる。
我々のモデルが他のSOTA SRアプローチよりも優れていることを示す大規模な実験を行った。
関連論文リスト
- DVMSR: Distillated Vision Mamba for Efficient Super-Resolution [7.551130027327461]
本研究では,ビジョン・マンバと蒸留戦略を組み込んだ新しい軽量画像SRネットワークであるDVMSRを提案する。
提案したDVMSRは,モデルパラメータの観点から,最先端の効率的なSR手法より優れている。
論文 参考訳(メタデータ) (2024-05-05T17:34:38Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像において顕著な性能を得た。
本稿では,注目ブロックを効率的に活用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:06:29Z) - Lightweight Image Super-Resolution with Multi-scale Feature Interaction
Network [15.846394239848959]
軽量マルチスケール機能インタラクションネットワーク(MSFIN)を提案する。
軽量SISRでは、MSFINは受容野を拡張し、低解像度の観測画像の情報的特徴を適切に活用する。
提案したMSFINは,より軽量なモデルで最先端技術に匹敵する性能を達成できる。
論文 参考訳(メタデータ) (2021-03-24T07:25:21Z) - Lightweight Single-Image Super-Resolution Network with Attentive
Auxiliary Feature Learning [73.75457731689858]
本稿では,SISR の注意補助機能 (A$2$F) に基づく計算効率が高く正確なネットワークを構築した。
大規模データセットを用いた実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-11-13T06:01:46Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
我々は、モデル誘導深部展開ネットワーク(MoG-DUN)と呼ばれるSISRに対する説明可能なアプローチを提示し、提唱する。
MoG-DUNは正確(エイリアスを少なくする)、計算効率(モデルパラメータを減らした)、多用途(多重劣化を処理できる)である。
RCAN, SRDNF, SRFBNを含む既存の最先端画像手法に対するMoG-DUN手法の優位性は、いくつかの一般的なデータセットと様々な劣化シナリオに関する広範な実験によって実証されている。
論文 参考訳(メタデータ) (2020-09-14T08:23:37Z) - OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling
Network [3.6683231417848283]
SISRを任意のスケールで1つのモデルで解くための,深層でも軽量な畳み込みネットワークであるOverNetを紹介した。
我々のネットワークは、従来の手法よりも少ないパラメータを使用しながら、標準ベンチマークにおいて、過去の最先端結果よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-05T22:10:29Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。