論文の概要: Lightweight Image Super-Resolution with Multi-scale Feature Interaction
Network
- arxiv url: http://arxiv.org/abs/2103.13028v1
- Date: Wed, 24 Mar 2021 07:25:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-25 13:50:57.325035
- Title: Lightweight Image Super-Resolution with Multi-scale Feature Interaction
Network
- Title(参考訳): マルチスケール特徴対話ネットワークを用いた軽量画像超解像
- Authors: Zhengxue Wang, Guangwei Gao, Juncheng Li, Yi Yu, Huimin Lu
- Abstract要約: 軽量マルチスケール機能インタラクションネットワーク(MSFIN)を提案する。
軽量SISRでは、MSFINは受容野を拡張し、低解像度の観測画像の情報的特徴を適切に活用する。
提案したMSFINは,より軽量なモデルで最先端技術に匹敵する性能を達成できる。
- 参考スコア(独自算出の注目度): 15.846394239848959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the single image super-resolution (SISR) approaches with deep and
complex convolutional neural network structures have achieved promising
performance. However, those methods improve the performance at the cost of
higher memory consumption, which is difficult to be applied for some mobile
devices with limited storage and computing resources. To solve this problem, we
present a lightweight multi-scale feature interaction network (MSFIN). For
lightweight SISR, MSFIN expands the receptive field and adequately exploits the
informative features of the low-resolution observed images from various scales
and interactive connections. In addition, we design a lightweight recurrent
residual channel attention block (RRCAB) so that the network can benefit from
the channel attention mechanism while being sufficiently lightweight. Extensive
experiments on some benchmarks have confirmed that our proposed MSFIN can
achieve comparable performance against the state-of-the-arts with a more
lightweight model.
- Abstract(参考訳): 近年、深部および複雑な畳み込みニューラルネットワーク構造を用いた単一画像超解像(SISR)アプローチは、有望な性能を達成した。
しかし,ストレージや計算資源が限られている一部のモバイルデバイスには適用が難しいため,メモリ消費の増大による性能向上が期待できる。
この問題を解決するために,軽量なマルチスケール機能インタラクションネットワーク(MSFIN)を提案する。
軽量SISRでは、MSFINは受容領域を拡張し、様々なスケールと対話的な接続から低解像度の観測画像の情報的特徴を適切に活用する。
さらに,ネットワークが十分に軽量でありながらチャネルアテンション機構の恩恵を受けられるように,リカレント残チャンネルアテンションブロック(RRCAB)を設計する。
いくつかのベンチマークに関する広範な実験により、提案するmsfinがより軽量なモデルで最先端のシステムと同等の性能を達成できることが確認された。
関連論文リスト
- DVMSR: Distillated Vision Mamba for Efficient Super-Resolution [7.551130027327461]
本研究では,ビジョン・マンバと蒸留戦略を組み込んだ新しい軽量画像SRネットワークであるDVMSRを提案する。
提案したDVMSRは,モデルパラメータの観点から,最先端の効率的なSR手法より優れている。
論文 参考訳(メタデータ) (2024-05-05T17:34:38Z) - Spatially-Adaptive Feature Modulation for Efficient Image
Super-Resolution [90.16462805389943]
視覚変換器(ViT)のようなブロック上に,空間適応型特徴変調(SAFM)機構を開発する。
提案法は最先端のSR法よりも3倍程度小さい。
論文 参考訳(メタデータ) (2023-02-27T14:19:31Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像において顕著な性能を得た。
本稿では,注目ブロックを効率的に活用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:06:29Z) - Deep Networks for Image and Video Super-Resolution [30.75380029218373]
単一画像超解像(SISR)は、MDCB(Mixed-Dense connection block)と呼ばれる効率的な畳み込みユニットを用いて構築される。
ネットワークの2つのバージョンをトレーニングし、異なる損失構成を用いて相補的な画像品質を向上させる。
ネットワークは複数のフレームから情報を集約し,時間的整合性を維持するために学習する。
論文 参考訳(メタデータ) (2022-01-28T09:15:21Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - DDCNet: Deep Dilated Convolutional Neural Network for Dense Prediction [0.0]
受容場(ERF)とネットワーク内の空間的特徴の高分解能は、高分解能密度推定を提供することに不可欠である。
空間的特徴の解像度を高く保ちながら、より大きな受容場を提供できるネットワークアーキテクチャを設計するための体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-07-09T23:15:34Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Image deblurring based on lightweight multi-information fusion network [6.848061582669787]
画像デブロアリングのための軽量多情報融合ネットワーク(LMFN)を提案する。
符号化段階では、画像特徴は、マルチスケール情報抽出および融合のための様々な小規模空間に還元される。
その後、デコード段階で蒸留ネットワークが使用され、ネットワークは残留学習から最も利益を得ます。
私たちのネットワークは、少ないパラメータで最新の画像破壊結果を達成し、モデルの複雑さで既存の方法を上回ることができます。
論文 参考訳(メタデータ) (2021-01-14T00:37:37Z) - MPRNet: Multi-Path Residual Network for Lightweight Image Super
Resolution [2.3576437999036473]
軽量SRにおけるSOTA性能を向上させる軽量超解像ネットワークを提案する。
提案アーキテクチャには新たなアテンション機構であるTwo-Fold Attention Moduleが含まれており,モデルの表現能力を最大化することができる。
論文 参考訳(メタデータ) (2020-11-09T17:11:15Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
本稿では,HSIの空間分解能を高めるために,CUCaNetというクロスアテンション機構を備えた新しい結合型アンミックスネットワークを提案する。
3つの広く使われているHS-MSデータセットに対して、最先端のHSI-SRモデルと比較実験を行った。
論文 参考訳(メタデータ) (2020-07-10T08:08:20Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。