Numerically Solving Parametric Families of High-Dimensional Kolmogorov
Partial Differential Equations via Deep Learning
- URL: http://arxiv.org/abs/2011.04602v1
- Date: Mon, 9 Nov 2020 17:57:11 GMT
- Title: Numerically Solving Parametric Families of High-Dimensional Kolmogorov
Partial Differential Equations via Deep Learning
- Authors: Julius Berner, Markus Dablander, Philipp Grohs
- Abstract summary: We present a deep learning algorithm for the numerical solution of parametric families of high-dimensional linear Kolmogorov partial differential equations (PDEs)
Our method is based on reformulating the numerical approximation of a whole family of Kolmogorov PDEs as a single statistical learning problem using the Feynman-Kac formula.
We show that a single deep neural network trained on simulated data is capable of learning the solution functions of an entire family of PDEs on a full space-time region.
- Score: 8.019491256870557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a deep learning algorithm for the numerical solution of parametric
families of high-dimensional linear Kolmogorov partial differential equations
(PDEs). Our method is based on reformulating the numerical approximation of a
whole family of Kolmogorov PDEs as a single statistical learning problem using
the Feynman-Kac formula. Successful numerical experiments are presented, which
empirically confirm the functionality and efficiency of our proposed algorithm
in the case of heat equations and Black-Scholes option pricing models
parametrized by affine-linear coefficient functions. We show that a single deep
neural network trained on simulated data is capable of learning the solution
functions of an entire family of PDEs on a full space-time region. Most
notably, our numerical observations and theoretical results also demonstrate
that the proposed method does not suffer from the curse of dimensionality,
distinguishing it from almost all standard numerical methods for PDEs.
Related papers
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Approximation of Solution Operators for High-dimensional PDEs [2.3076986663832044]
We propose a finite-dimensional control-based method to approximate solution operators for evolutional partial differential equations.
Results are presented for several high-dimensional PDEs, including real-world applications to solving Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-18T21:45:09Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
We introduce a novel operator learning-based approach for solving parametric partial differential equations (PDEs) without the need for data harnessing.
The proposed framework demonstrates superior performance compared to existing scientific machine learning techniques.
arXiv Detail & Related papers (2023-10-03T12:37:15Z) - Finite Element Operator Network for Solving Parametric PDEs [10.855582917943092]
Partial differential equations (PDEs) underlie our understanding and prediction of natural phenomena.
We propose a novel approach for solving parametric PDEs using a Finite Element Operator Network (FEONet)
arXiv Detail & Related papers (2023-08-09T03:56:07Z) - Multilevel CNNs for Parametric PDEs [0.0]
We combine concepts from multilevel solvers for partial differential equations with neural network based deep learning.
An in-depth theoretical analysis shows that the proposed architecture is able to approximate multigrid V-cycles to arbitrary precision.
We find substantial improvements over state-of-the-art deep learning-based solvers.
arXiv Detail & Related papers (2023-04-01T21:11:05Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Data-Driven Theory-guided Learning of Partial Differential Equations
using SimultaNeous Basis Function Approximation and Parameter Estimation
(SNAPE) [0.0]
We propose a technique of parameter estimation of partial differential equations (PDEs) that is robust against high levels of noise 100 %.
SNAPE not only demonstrates its applicability on various complex dynamic systems that encompass wide scientific domains.
The method systematically combines the knowledge of well-established scientific theories and the concepts of data science to infer the properties of the process from the observed data.
arXiv Detail & Related papers (2021-09-14T22:54:30Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.