Data-Driven Theory-guided Learning of Partial Differential Equations
using SimultaNeous Basis Function Approximation and Parameter Estimation
(SNAPE)
- URL: http://arxiv.org/abs/2109.07471v1
- Date: Tue, 14 Sep 2021 22:54:30 GMT
- Title: Data-Driven Theory-guided Learning of Partial Differential Equations
using SimultaNeous Basis Function Approximation and Parameter Estimation
(SNAPE)
- Authors: Sutanu Bhowmick and Satish Nagarajaiah
- Abstract summary: We propose a technique of parameter estimation of partial differential equations (PDEs) that is robust against high levels of noise 100 %.
SNAPE not only demonstrates its applicability on various complex dynamic systems that encompass wide scientific domains.
The method systematically combines the knowledge of well-established scientific theories and the concepts of data science to infer the properties of the process from the observed data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The measured spatiotemporal response of various physical processes is
utilized to infer the governing partial differential equations (PDEs). We
propose SimultaNeous Basis Function Approximation and Parameter Estimation
(SNAPE), a technique of parameter estimation of PDEs that is robust against
high levels of noise nearly 100 %, by simultaneously fitting basis functions to
the measured response and estimating the parameters of both ordinary and
partial differential equations. The domain knowledge of the general
multidimensional process is used as a constraint in the formulation of the
optimization framework. SNAPE not only demonstrates its applicability on
various complex dynamic systems that encompass wide scientific domains
including Schr\"odinger equation, chaotic duffing oscillator, and Navier-Stokes
equation but also estimates an analytical approximation to the process
response. The method systematically combines the knowledge of well-established
scientific theories and the concepts of data science to infer the properties of
the process from the observed data.
Related papers
- Estimating unknown parameters in differential equations with a reinforcement learning based PSO method [2.9808905403445145]
This paper reformulates the parameter estimation problem of differential equations as an optimization problem by introducing the concept of particles.
Building on reinforcement learning-based particle swarm optimization (RLLPSO), this paper proposes a novel method, DERLPSO, for estimating unknown parameters of differential equations.
The experimental results demonstrate that our DERLPSO consistently outperforms other methods in terms of performance, achieving an average Mean Square Error of 1.13e-05.
arXiv Detail & Related papers (2024-11-13T14:40:51Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Assessment of Uncertainty Quantification in Universal Differential Equations [1.374796982212312]
Universal Differential Equations (UDEs) are used to combine prior knowledge in the form of mechanistic formulations with universal function approximators, like neural networks.
We provide a formalisation of uncertainty quantification (UQ) for UDEs and investigate important frequentist and Bayesian methods.
arXiv Detail & Related papers (2024-06-13T06:36:19Z) - Diffusion Tempering Improves Parameter Estimation with Probabilistic Integrators for Ordinary Differential Equations [34.500484733973536]
Ordinary differential equations (ODEs) are widely used to describe dynamical systems in science, but identifying parameters that explain experimental measurements is challenging.
We propose diffusion tempering, a novel regularization technique for probabilistic numerical methods which improves convergence of gradient-based parameter optimization in ODEs.
We demonstrate that our method is effective for dynamical systems of different complexity and show that it obtains reliable parameter estimates for a Hodgkin-Huxley model with a practically relevant number of parameters.
arXiv Detail & Related papers (2024-02-19T15:36:36Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Numerically Solving Parametric Families of High-Dimensional Kolmogorov
Partial Differential Equations via Deep Learning [8.019491256870557]
We present a deep learning algorithm for the numerical solution of parametric families of high-dimensional linear Kolmogorov partial differential equations (PDEs)
Our method is based on reformulating the numerical approximation of a whole family of Kolmogorov PDEs as a single statistical learning problem using the Feynman-Kac formula.
We show that a single deep neural network trained on simulated data is capable of learning the solution functions of an entire family of PDEs on a full space-time region.
arXiv Detail & Related papers (2020-11-09T17:57:11Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
This work introduces a physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy representation data.
The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of PDE systems.
The resulting computational framework shows the potential for closed-form model discovery in practical applications.
arXiv Detail & Related papers (2020-05-05T22:13:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.