Decentralized Structural-RNN for Robot Crowd Navigation with Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2011.04820v3
- Date: Thu, 3 Jun 2021 15:51:50 GMT
- Title: Decentralized Structural-RNN for Robot Crowd Navigation with Deep
Reinforcement Learning
- Authors: Shuijing Liu, Peixin Chang, Weihang Liang, Neeloy Chakraborty,
Katherine Driggs-Campbell
- Abstract summary: We propose structural-Recurrent Neural Network (DS-RNN), a novel network that reasons about spatial and temporal relationships for robot decision making in crowd navigation.
We demonstrate that our model outperforms previous methods in challenging crowd navigation scenarios.
We successfully transfer the policy learned in the simulator to a real-world TurtleBot 2i.
- Score: 4.724825031148412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe and efficient navigation through human crowds is an essential capability
for mobile robots. Previous work on robot crowd navigation assumes that the
dynamics of all agents are known and well-defined. In addition, the performance
of previous methods deteriorates in partially observable environments and
environments with dense crowds. To tackle these problems, we propose
decentralized structural-Recurrent Neural Network (DS-RNN), a novel network
that reasons about spatial and temporal relationships for robot decision making
in crowd navigation. We train our network with model-free deep reinforcement
learning without any expert supervision. We demonstrate that our model
outperforms previous methods in challenging crowd navigation scenarios. We
successfully transfer the policy learned in the simulator to a real-world
TurtleBot 2i.
Related papers
- HEIGHT: Heterogeneous Interaction Graph Transformer for Robot Navigation in Crowded and Constrained Environments [8.974071308749007]
We study the problem of robot navigation in dense and interactive crowds with environmental constraints such as corridors and furniture.
Previous methods fail to consider all types of interactions among agents and obstacles, leading to unsafe and inefficient robot paths.
We propose a structured framework to learn robot navigation policies with reinforcement learning.
arXiv Detail & Related papers (2024-11-19T00:56:35Z) - Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation [58.574464340559466]
We advocate for hyperbolic learning to enable crowd navigation and we introduce Hyp2Nav.
Hyp2Nav leverages the intrinsic properties of hyperbolic geometry to better encode the hierarchical nature of decision-making processes in navigation tasks.
We propose a hyperbolic policy model and a hyperbolic curiosity module that results in effective social navigation, best success rates, and returns across multiple simulation settings.
arXiv Detail & Related papers (2024-07-18T14:40:33Z) - Structured Graph Network for Constrained Robot Crowd Navigation with Low Fidelity Simulation [10.201765067255147]
We investigate the feasibility of deploying reinforcement learning (RL) policies for constrained crowd navigation using a low-fidelity simulator.
We introduce a representation of the dynamic environment, separating human and obstacle representations.
This representation enables RL policies trained in a low-fidelity simulator to deploy in real world with a reduced sim2real gap.
arXiv Detail & Related papers (2024-05-27T04:53:09Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEAR enables robots to be placed in real-world environments and left to train autonomously without interruption.
System streams robot experience to a web interface only requiring occasional asynchronous feedback from remote, crowdsourced, non-expert humans.
arXiv Detail & Related papers (2023-10-31T16:43:56Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
We study the problem of safe and intention-aware robot navigation in dense and interactive crowds.
We propose a novel recurrent graph neural network with attention mechanisms to capture heterogeneous interactions among agents.
We demonstrate that our method enables the robot to achieve good navigation performance and non-invasiveness in challenging crowd navigation scenarios.
arXiv Detail & Related papers (2022-03-03T16:26:36Z) - Human-Aware Robot Navigation via Reinforcement Learning with Hindsight
Experience Replay and Curriculum Learning [28.045441768064215]
Reinforcement learning approaches have shown superior ability in solving sequential decision making problems.
In this work, we consider the task of training an RL agent without employing the demonstration data.
We propose to incorporate the hindsight experience replay (HER) and curriculum learning (CL) techniques with RL to efficiently learn the optimal navigation policy in the dense crowd.
arXiv Detail & Related papers (2021-10-09T13:18:11Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z) - LaND: Learning to Navigate from Disengagements [158.6392333480079]
We present a reinforcement learning approach for learning to navigate from disengagements, or LaND.
LaND learns a neural network model that predicts which actions lead to disengagements given the current sensory observation, and then at test time plans and executes actions that avoid disengagements.
Our results demonstrate LaND can successfully learn to navigate in diverse, real world sidewalk environments, outperforming both imitation learning and reinforcement learning approaches.
arXiv Detail & Related papers (2020-10-09T17:21:42Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
We propose an approach that combines learning-based perception with model-based optimal control to navigate among humans.
Our approach is enabled by our novel data-generation tool, HumANav.
We demonstrate that the learned navigation policies can anticipate and react to humans without explicitly predicting future human motion.
arXiv Detail & Related papers (2020-03-20T16:13:47Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.