Decentralized Structural-RNN for Robot Crowd Navigation with Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2011.04820v4
- Date: Mon, 27 Jan 2025 18:56:16 GMT
- Title: Decentralized Structural-RNN for Robot Crowd Navigation with Deep Reinforcement Learning
- Authors: Shuijing Liu, Peixin Chang, Weihang Liang, Neeloy Chakraborty, Katherine Driggs-Campbell,
- Abstract summary: DS-RNN is a novel network that reasons about spatial and temporal relationships for robot decision making in crowd navigation.
We train our network with model-free deep reinforcement learning without any expert supervision.
We demonstrate that our model outperforms previous methods in challenging crowd navigation scenarios.
- Score: 12.63032312290331
- License:
- Abstract: Safe and efficient navigation through human crowds is an essential capability for mobile robots. Previous work on robot crowd navigation assumes that the dynamics of all agents are known and well-defined. In addition, the performance of previous methods deteriorates in partially observable environments and environments with dense crowds. To tackle these problems, we propose decentralized structural-Recurrent Neural Network (DS-RNN), a novel network that reasons about spatial and temporal relationships for robot decision making in crowd navigation. We train our network with model-free deep reinforcement learning without any expert supervision. We demonstrate that our model outperforms previous methods in challenging crowd navigation scenarios. We successfully transfer the policy learned in the simulator to a real-world TurtleBot 2i. For more information, please visit the project website at https://sites.google.com/view/crowdnav-ds-rnn/home.
Related papers
- Hyp2Nav: Hyperbolic Planning and Curiosity for Crowd Navigation [58.574464340559466]
We advocate for hyperbolic learning to enable crowd navigation and we introduce Hyp2Nav.
Hyp2Nav leverages the intrinsic properties of hyperbolic geometry to better encode the hierarchical nature of decision-making processes in navigation tasks.
We propose a hyperbolic policy model and a hyperbolic curiosity module that results in effective social navigation, best success rates, and returns across multiple simulation settings.
arXiv Detail & Related papers (2024-07-18T14:40:33Z) - Structured Graph Network for Constrained Robot Crowd Navigation with Low Fidelity Simulation [10.201765067255147]
We investigate the feasibility of deploying reinforcement learning (RL) policies for constrained crowd navigation using a low-fidelity simulator.
We introduce a representation of the dynamic environment, separating human and obstacle representations.
This representation enables RL policies trained in a low-fidelity simulator to deploy in real world with a reduced sim2real gap.
arXiv Detail & Related papers (2024-05-27T04:53:09Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEAR enables robots to be placed in real-world environments and left to train autonomously without interruption.
System streams robot experience to a web interface only requiring occasional asynchronous feedback from remote, crowdsourced, non-expert humans.
arXiv Detail & Related papers (2023-10-31T16:43:56Z) - GNM: A General Navigation Model to Drive Any Robot [67.40225397212717]
General goal-conditioned model for vision-based navigation can be trained on data obtained from many distinct but structurally similar robots.
We analyze the necessary design decisions for effective data sharing across robots.
We deploy the trained GNM on a range of new robots, including an under quadrotor.
arXiv Detail & Related papers (2022-10-07T07:26:41Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
We present Gesture2Path, a novel social navigation approach that combines image-based imitation learning with model-predictive control.
We deploy our method on real robots and showcase the effectiveness of our approach for the four gestures-navigation scenarios.
arXiv Detail & Related papers (2022-09-19T23:05:36Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
We study the problem of safe and intention-aware robot navigation in dense and interactive crowds.
We propose a novel recurrent graph neural network with attention mechanisms to capture heterogeneous interactions among agents.
We demonstrate that our method enables the robot to achieve good navigation performance and non-invasiveness in challenging crowd navigation scenarios.
arXiv Detail & Related papers (2022-03-03T16:26:36Z) - LaND: Learning to Navigate from Disengagements [158.6392333480079]
We present a reinforcement learning approach for learning to navigate from disengagements, or LaND.
LaND learns a neural network model that predicts which actions lead to disengagements given the current sensory observation, and then at test time plans and executes actions that avoid disengagements.
Our results demonstrate LaND can successfully learn to navigate in diverse, real world sidewalk environments, outperforming both imitation learning and reinforcement learning approaches.
arXiv Detail & Related papers (2020-10-09T17:21:42Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
We propose an approach that combines learning-based perception with model-based optimal control to navigate among humans.
Our approach is enabled by our novel data-generation tool, HumANav.
We demonstrate that the learned navigation policies can anticipate and react to humans without explicitly predicting future human motion.
arXiv Detail & Related papers (2020-03-20T16:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.