Nonlinear level attraction of cavity axion polariton in
antiferromagnetic topological insulator
- URL: http://arxiv.org/abs/2011.04916v3
- Date: Sat, 2 Oct 2021 11:01:33 GMT
- Title: Nonlinear level attraction of cavity axion polariton in
antiferromagnetic topological insulator
- Authors: Yang Xiao, Huaiqiang Wang, Dinghui Wang, Ruifeng Lu, Xiaohong Yan,
Hong Guo, C. -M. Hu, Ke Xia, Haijun Zhang and Dingyu Xing
- Abstract summary: Axion quasiparticles, emerging in topological insulators, were predicted to strongly couple with the light and generate the so-called axion polariton.
Here, we demonstrate that there arises a gapless level attraction in cavity axion polariton of antiferromagnetic topological insulators.
Our results reveal a new mechanism of level attractions, and open up new roads for exploring the axion polariton with cavity technologies.
- Score: 18.199592421807928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strong coupling between cavity photons and various excitations in condensed
matters boosts the field of light-matter interaction and generates several
exciting sub-fields, such as cavity optomechanics and cavity magnon polariton.
Axion quasiparticles, emerging in topological insulators, were predicted to
strongly couple with the light and generate the so-called axion polariton.
Here, we demonstrate that there arises a gapless level attraction in cavity
axion polariton of antiferromagnetic topological insulators, which originates
from a nonlinear interaction between axion and the odd-order resonance of
cavity. Such a novel level attraction is essentially different from
conventional level attractions with the mechanism of either a linear coupling
or a dissipation-mediated interaction, and also different from the level
repulsion induced by the strong coupling in common polaritons. Our results
reveal a new mechanism of level attractions, and open up new roads for
exploring the axion polariton with cavity technologies. They have potential
applications for quantum information and dark matter research.
Related papers
- Superradiance of strongly interacting dipolar excitons in moiré quantum materials [0.08192907805418582]
We study the cooperative radiance of moir'e excitons that is demonstrated to emerge from the deep subwavelength nature of the moir'e lattice.
Our results show that interlayer moir'e excitons offer a unique platform for exploring cooperative optical phenomena in strongly interacting many-body systems.
arXiv Detail & Related papers (2024-10-11T15:08:58Z) - General theory of cavity-mediated interactions between low-energy matter excitations [0.0]
cavity quantum electrodynamics engineering has been suggested as a way to enhance low-energy matter properties.
We investigate the effective interactions between low-energy matter excitations induced by the off-resonant coupling with cavity electromagnetic modes.
arXiv Detail & Related papers (2024-07-28T12:15:34Z) - Nonlinear spectroscopy of semiconductor moiré materials [0.0]
We use time-resolved nonlinear pump--probe measurements to reveal features of semiconductor moir'e materials.
We generate a high density of virtual excitons or exciton--polarons in various moir'e minibands.
arXiv Detail & Related papers (2024-02-26T15:02:51Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - A background-free optically levitated charge sensor [50.591267188664666]
We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
arXiv Detail & Related papers (2021-12-20T08:16:28Z) - Formation of Matter-Wave Polaritons in an Optical Lattice [0.0]
polariton is a quasiparticle formed by strong coupling of a photon to a matter excitation.
We develop an ultracold-atom analogue of an exciton-polariton system in which interacting polaritonic phases can be studied.
Our work opens up novel possibilities for studies of polaritonic quantum matter.
arXiv Detail & Related papers (2021-09-06T04:46:31Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Cavity-induced exciton localisation and polariton blockade in
two-dimensional semiconductors coupled to an electromagnetic resonator [0.0]
Recent experiments have demonstrated strong light-matter coupling between electromagnetic nanoresonators and pristine sheets of two-dimensional semiconductors.
We present a first-principles microscopic quantum theory for the interaction between excitons in an infinite sheet of two-dimensional material and a localised electromagnetic resonator.
We predict that polariton blockade due to nonlinear exciton-exciton interactions is well within reach for nanoresonators coupled to transition-metal dichalcogenides.
arXiv Detail & Related papers (2021-03-26T14:16:34Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.