Device Scheduling for Relay-assisted Over-the-Air Aggregation in
Federated Learning
- URL: http://arxiv.org/abs/2312.12417v1
- Date: Fri, 15 Dec 2023 03:04:39 GMT
- Title: Device Scheduling for Relay-assisted Over-the-Air Aggregation in
Federated Learning
- Authors: Fan Zhang, Jining Chen, Kunlun Wang, and Wen Chen
- Abstract summary: Federated learning (FL) leverages data distributed at the edge of the network to enable intelligent applications.
In this paper, we propose a relay-assisted FL framework, and investigate the device scheduling problem in relay-assisted FL systems.
- Score: 9.735236606901038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) leverages data distributed at the edge of the network
to enable intelligent applications. The efficiency of FL can be improved by
using over-the-air computation (AirComp) technology in the process of gradient
aggregation. In this paper, we propose a relay-assisted large-scale FL
framework, and investigate the device scheduling problem in relay-assisted FL
systems under the constraints of power consumption and mean squared error
(MSE). we formulate a joint device scheduling, and power allocation problem to
maximize the number of scheduled devices. We solve the resultant non-convex
optimization problem by transforming the optimization problem into multiple
sparse optimization problems. By the proposed device scheduling algorithm,
these sparse sub-problems are solved and the maximum number of federated
learning edge devices is obtained. The simulation results demonstrate the
effectiveness of the proposed scheme as compared with other benchmark schemes.
Related papers
- Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
We consider a joint device selection and aggregate beamforming design with the objectives of minimizing the aggregate error and maximizing the number of selected devices.
To tackle the problems in a cost-effective manner, we propose a random aggregate beamforming-based scheme.
We additionally use analysis to study the obtained aggregate error and the number of the selected devices when the number of devices becomes large.
arXiv Detail & Related papers (2024-02-20T23:59:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - Over-the-Air Multi-Task Federated Learning Over MIMO Interference
Channel [17.362158131772127]
We study over-the-air multi-task FL (OA-MTFL) over the multiple-input multiple-output (MIMO) interference channel.
We propose a novel model aggregation method for the alignment of local gradients for different devices.
We show that due to the use of the new model aggregation method, device selection is no longer essential to our scheme.
arXiv Detail & Related papers (2021-12-27T10:42:04Z) - Fast Federated Learning in the Presence of Arbitrary Device
Unavailability [26.368873771739715]
Federated Learning (FL) coordinates heterogeneous devices to collaboratively train a shared model while preserving user privacy.
One challenge arises when devices drop out of the training process beyond the central server.
We propose Im Federated Apatientaging (MIFA) to solve this problem.
arXiv Detail & Related papers (2021-06-08T07:46:31Z) - Federated Learning via Intelligent Reflecting Surface [30.935389187215474]
Over-the-air computation algorithm (AirComp) based learning (FL) is capable of achieving fast model aggregation by exploiting the waveform superposition property of multiple access channels.
In this paper, we propose a two-step optimization framework to achieve fast yet reliable model aggregation for AirComp-based FL.
Simulation results will demonstrate that our proposed framework and the deployment of an IRS can achieve a lower training loss and higher FL prediction accuracy than the baseline algorithms.
arXiv Detail & Related papers (2020-11-10T11:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.