論文の概要: Biomedical Information Extraction for Disease Gene Prioritization
- arxiv url: http://arxiv.org/abs/2011.05188v2
- Date: Thu, 12 Nov 2020 16:56:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 06:39:19.738704
- Title: Biomedical Information Extraction for Disease Gene Prioritization
- Title(参考訳): 疾患遺伝子優先順位付けのための生体情報抽出
- Authors: Jupinder Parmar, William Koehler, Martin Bringmann, Katharina Sophia
Volz, Berk Kapicioglu
- Abstract要約: 本稿では,テキストから生物関係を抽出するバイオメディカル情報抽出パイプラインを提案する。
本研究では,タンパク質-タンパク質相互作用(PPI)を抽出し,それらの抽出をバイオメディカル知識グラフに拡張するために,数千万のPubMed抽象体に適用する。
確立された構造化されたソースからのPPIをすでに含んでいるにもかかわらず、IEベースのグラフへの抽出を拡大することで、新しい疾患遺伝子関連を予測し、hit@30の20%の相対的な増加を予測できることが示されている。
- 参考スコア(独自算出の注目度): 0.34998703934432673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a biomedical information extraction (IE) pipeline that extracts
biological relationships from text and demonstrate that its components, such as
named entity recognition (NER) and relation extraction (RE), outperform
state-of-the-art in BioNLP. We apply it to tens of millions of PubMed abstracts
to extract protein-protein interactions (PPIs) and augment these extractions to
a biomedical knowledge graph that already contains PPIs extracted from STRING,
the leading structured PPI database. We show that, despite already containing
PPIs from an established structured source, augmenting our own IE-based
extractions to the graph allows us to predict novel disease-gene associations
with a 20% relative increase in hit@30, an important step towards developing
drug targets for uncured diseases.
- Abstract(参考訳): 生物医学情報抽出(IE)パイプラインを導入し、テキストから生物関係を抽出し、そのコンポーネントである名前付きエンティティ認識(NER)と関係抽出(RE)がBioNLPの最先端であることを示す。
タンパク質とタンパク質の相互作用(PPI)を抽出し,その抽出をSTRINGから抽出されたPPIを含むバイオメディカル知識グラフに適用した。
既に確立された構造化されたソースからppisを含んでいるにもかかわらず、グラフへのieベースの抽出を増強することで、hit@30の20%の相対的な増加による新しい疾患-遺伝子関連を予測することができる。
関連論文リスト
- Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
大規模言語モデル(LLM)はこの複雑なデータランドスケープをナビゲートする強力なツールとして登場した。
RAGGEDは、知識統合と仮説生成を伴う研究者を支援するために設計された包括的なワークフローである。
論文 参考訳(メタデータ) (2024-07-17T07:44:18Z) - BioBERT-based Deep Learning and Merged ChemProt-DrugProt for Enhanced Biomedical Relation Extraction [2.524192238862961]
我々のアプローチは、新しいマージ戦略を用いて、ChemProtとD薬局のデータセットを統合する。
本研究は, バイオメディカル研究と臨床実習における自動情報抽出の可能性を強調した。
論文 参考訳(メタデータ) (2024-05-28T21:34:01Z) - Extracting Protein-Protein Interactions (PPIs) from Biomedical
Literature using Attention-based Relational Context Information [5.456047952635665]
本研究は,二元的相互作用型ラベルを付加したベット型相互作用定義を用いた多元的PPIコーパスを提案する。
変換器を用いた深層学習手法は,関係表現のための関係文脈情報を利用して関係分類性能を向上させる。
このモデルの性能は, 広く研究されている4つのバイオメディカル関係抽出データセットで評価される。
論文 参考訳(メタデータ) (2024-03-08T01:43:21Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
本稿では,新興医薬品の相互作用を効果的に予測できるグラフニューラルネットワーク(GNN)であるEmerGNNを提案する。
EmerGNNは、薬物ペア間の経路を抽出し、ある薬物から他の薬物へ情報を伝達し、関連する生物学的概念を経路に組み込むことで、薬物のペアワイズ表現を学習する。
全体として、EmerGNNは、新興薬物の相互作用を予測する既存のアプローチよりも精度が高く、バイオメディカルネットワーク上で最も関連性の高い情報を特定できる。
論文 参考訳(メタデータ) (2023-11-15T06:34:00Z) - Applying BioBERT to Extract Germline Gene-Disease Associations for Building a Knowledge Graph from the Biomedical Literature [0.0]
本稿では,ジェムリン遺伝子と疾患を結合する知識グラフ構築手法SimpleGermKGを提案する。
遺伝子および疾患の抽出には、バイオメディカルコーパス上でトレーニング済みのBERTモデルであるBioBERTを用いる。
記事,遺伝子,疾患間の意味的関連性について,部分的関係性アプローチを実装した。
知識グラフには297の遺伝子、130の疾患、46,747のトリプルが含まれている。
論文 参考訳(メタデータ) (2023-09-11T18:05:12Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
本稿では,テキスト内薬物相乗学習のための新しい設定とモデルを提案する。
特定のがん細胞標的の文脈における10~20の薬物相乗関係の「個人化データセット」を作成した。
私たちの目標は、その文脈で追加の薬物シナジー関係を予測することです。
論文 参考訳(メタデータ) (2023-06-19T17:03:46Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
本稿では,バイオメディカルテキストと非構造化医療報告から関係を抽出するハイブリッドニューラルネットワークであるバイオメディカル情報抽出を提案する。
本研究は,2つの主要な生医学的関係抽出タスク,化学物質とタンパク質の相互作用,およびクロスホスピタル・パン・カンノロジー報告コーパスについて検討した。
論文 参考訳(メタデータ) (2021-10-26T13:19:28Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
人体における薬物と標的(DTI)の相互作用は、生物医学や応用において重要な役割を担っている。
毎年何百万もの論文がバイオメディカル分野で出回っているので、文学からDTIの知識を自動的に発見することは、業界にとって急激な需要となっている。
生成的アプローチを用いて,この課題に対する最初のエンドツーエンドソリューションについて検討する。
我々はDTI三重項をシーケンスとみなし、Transformerベースのモデルを使ってエンティティや関係の詳細なアノテーションを使わずに直接生成する。
論文 参考訳(メタデータ) (2021-09-27T17:00:14Z) - Assigning function to protein-protein interactions: a weakly supervised
BioBERT based approach using PubMed abstracts [2.208694022993555]
タンパク質とタンパク質の相互作用(PPI)は正常細胞と疾患細胞のタンパク質の機能に重要である。
タンパク質相互作用データベースで取得されるPPIのごく一部に、機能アノテーションがある。
本稿では,PubMed の要約に記述された関係を抽出することで,PPIの関数型をラベル付けすることを目的とする。
論文 参考訳(メタデータ) (2020-08-20T01:42:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。