論文の概要: Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network
- arxiv url: http://arxiv.org/abs/2311.09261v1
- Date: Wed, 15 Nov 2023 06:34:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 18:20:01.942971
- Title: Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network
- Title(参考訳): バイオメディカルネットワークを用いたフローベースグラフニューラルネットワークによる創発的薬物相互作用予測
- Authors: Yongqi Zhang, Quanming Yao, Ling Yue, Xian Wu, Ziheng Zhang, Zhenxi
Lin, Yefeng Zheng
- Abstract要約: 本稿では,新興医薬品の相互作用を効果的に予測できるグラフニューラルネットワーク(GNN)であるEmerGNNを提案する。
EmerGNNは、薬物ペア間の経路を抽出し、ある薬物から他の薬物へ情報を伝達し、関連する生物学的概念を経路に組み込むことで、薬物のペアワイズ表現を学習する。
全体として、EmerGNNは、新興薬物の相互作用を予測する既存のアプローチよりも精度が高く、バイオメディカルネットワーク上で最も関連性の高い情報を特定できる。
- 参考スコア(独自算出の注目度): 69.16939798838159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately predicting drug-drug interactions (DDI) for emerging drugs, which
offer possibilities for treating and alleviating diseases, with computational
methods can improve patient care and contribute to efficient drug development.
However, many existing computational methods require large amounts of known DDI
information, which is scarce for emerging drugs. In this paper, we propose
EmerGNN, a graph neural network (GNN) that can effectively predict interactions
for emerging drugs by leveraging the rich information in biomedical networks.
EmerGNN learns pairwise representations of drugs by extracting the paths
between drug pairs, propagating information from one drug to the other, and
incorporating the relevant biomedical concepts on the paths. The different
edges on the biomedical network are weighted to indicate the relevance for the
target DDI prediction. Overall, EmerGNN has higher accuracy than existing
approaches in predicting interactions for emerging drugs and can identify the
most relevant information on the biomedical network.
- Abstract(参考訳): 疾患の治療と緩和の可能性を提供する新興薬の薬物-薬物相互作用(ddi)を正確に予測することは、患者のケアを改善し、効率的な薬物開発に寄与することができる。
しかし、既存の計算手法の多くは大量のddi情報を必要とするため、新興薬には不足している。
本稿では,バイオメディカルネットワークの豊富な情報を活用することにより,新興医薬品との相互作用を効果的に予測できるグラフニューラルネットワーク(GNN)であるEmerGNNを提案する。
EmerGNNは、薬物ペア間の経路を抽出し、ある薬物から他の薬物へ情報を伝達し、関連する生物学的概念を経路に組み込むことで、薬物のペアワイズ表現を学習する。
バイオメディカルネットワーク上の異なるエッジは、ターゲットDDI予測の関連性を示すために重み付けされる。
全体として、emergnnは、新興薬の相互作用を予測する既存のアプローチよりも高い精度を持ち、バイオメディカルネットワークの最も関連する情報を特定することができる。
関連論文リスト
- DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
本稿では,最先端の機械学習技術と知識統合を用いた医薬品再調達プロセスを強化するためのマルチエージェントフレームワークを提案する。
AIエージェントは、DTIモデルを訓練し、知識グラフエージェントはDGIdbを使用してDTIを系統的に抽出する。
これらのエージェントからの出力を統合することで、外部データベースを含む多様なデータソースを効果的に活用し、実行可能な再資源化候補を提案する。
論文 参考訳(メタデータ) (2024-08-23T21:24:59Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
既存の方法は、DTI予測中にグローバルなタンパク質情報を利用することができない。
ローカルおよびグローバルなタンパク質情報を取得するために、クロスフィールド情報融合戦略が採用されている。
SiamDTI予測法は、新規薬物や標的に対する他の最先端(SOTA)法よりも高い精度を達成する。
論文 参考訳(メタデータ) (2024-05-23T13:25:20Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm [0.521420263116111]
薬物相乗効果予測のためのグラフニューラルネットワーク(textitGNN)モデルを提案する。
従来のモデルとは対照的に、我々のGNNベースのアプローチは、薬物のグラフ構造から直接タスク特異的な薬物表現を学習する。
我々の研究は、タスク固有の薬物表現を学習し、多様なデータセットを活用することが、薬物と薬物の相互作用とシナジーの理解を深めるための有望なアプローチであることを示唆している。
論文 参考訳(メタデータ) (2022-10-03T10:16:29Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
DDI予測のための新しいマルチビュードラッグサブ構造ネットワーク(MSN-DDI)を提案する。
MSN-DDIは、単一の薬物(イントラビュー)と薬物ペア(インタービュー)の両方の表現から化学的サブ構造を同時に学習し、そのサブ構造を利用して、薬物表現を反復的に更新する。
総合的な評価では、MSN-DDIは、トランスダクティブ・セッティングの下で比較的改善された19.32%と99%以上の精度を達成することで、既存の薬物に対するDDI予測をほぼ解決したことを示している。
論文 参考訳(メタデータ) (2022-03-28T05:44:29Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
我々は、AI支援薬物発見のための体系的なOODデータセットキュレーターおよびベンチマークであるTarmOODを提案する。
DrugOODには、ベンチマークプロセスを完全に自動化するオープンソースのPythonパッケージが付属している。
我々は、薬物標的結合親和性予測という、AIDDにおける最も重要な問題の1つに焦点を当てる。
論文 参考訳(メタデータ) (2022-01-24T12:32:48Z) - A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge
Graph Perspective [4.746544835197422]
薬物発見分野に新しい技術を適用することに興味を持つ機械学習や知識グラフの実践者を支援することを目的としている。
様々な創薬中心の知識グラフの構築に適した情報を含む公開のプライマリデータソースを詳細に説明します。
論文 参考訳(メタデータ) (2021-02-19T17:49:38Z) - Heterogeneous Graph based Deep Learning for Biomedical Network Link
Prediction [7.628651624423363]
バイオメディカルネットワークリンクを予測するためのグラフペアベースのリンク予測モデル(GPLP)を提案する。
InPでは、既知のネットワーク相互作用行列から抽出された1ホップのサブグラフを学習し、欠落リンクを予測する。
本手法は他のバイオメディカルネットワークにおける潜在的な応用を実証する。
論文 参考訳(メタデータ) (2021-01-28T07:35:29Z) - Predicting Biomedical Interactions with Higher-Order Graph Convolutional
Networks [2.9488233765621295]
本稿では,生物医学的相互作用予測のための高次グラフ畳み込みネットワーク(HOGCN)を提案する。
タンパク質-タンパク質、薬物-ドラッグ、薬物-ターゲット、遺伝子-放出相互作用を含む4つの相互作用ネットワークの実験は、HOGCNがより正確で校正された予測を達成していることを示している。
論文 参考訳(メタデータ) (2020-10-16T17:16:09Z) - SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge
Graph Summarization [64.56399911605286]
本稿では,サブグラフ抽出モジュールによって実現された知識要約グラフニューラルネットワークSumGNNを提案する。
SumGNNは5.54%まで最高のベースラインを上回り、データ関係の低いタイプでは特にパフォーマンスの向上が顕著である。
論文 参考訳(メタデータ) (2020-10-04T00:14:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。