論文の概要: UmBERTo-MTSA @ AcCompl-It: Improving Complexity and Acceptability
Prediction with Multi-task Learning on Self-Supervised Annotations
- arxiv url: http://arxiv.org/abs/2011.05197v1
- Date: Tue, 10 Nov 2020 15:50:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 06:39:04.743403
- Title: UmBERTo-MTSA @ AcCompl-It: Improving Complexity and Acceptability
Prediction with Multi-task Learning on Self-Supervised Annotations
- Title(参考訳): UmBERTo-MTSA @ AcCompl-It: 自己監督アノテーションを用いたマルチタスク学習による複雑度とアクセプタビリティ予測の改善
- Authors: Gabriele Sarti
- Abstract要約: 本研究は,ラベル付きデータの適度な使用量のみの学習モデルの性能向上に使用される,自己教師型データ拡張手法について述べる。
神経言語モデルは、EVALITA 2020におけるAcCompl-it共有タスクのコンテキストにおいて、この手順を用いて微調整される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work describes a self-supervised data augmentation approach used to
improve learning models' performances when only a moderate amount of labeled
data is available. Multiple copies of the original model are initially trained
on the downstream task. Their predictions are then used to annotate a large set
of unlabeled examples. Finally, multi-task training is performed on the
parallel annotations of the resulting training set, and final scores are
obtained by averaging annotator-specific head predictions. Neural language
models are fine-tuned using this procedure in the context of the AcCompl-it
shared task at EVALITA 2020, obtaining considerable improvements in prediction
quality.
- Abstract(参考訳): 本研究は,ラベル付きデータの適度な使用量のみの学習モデルの性能向上に使用される,自己教師型データ拡張手法について述べる。
オリジナルのモデルの複数のコピーは、最初に下流タスクでトレーニングされる。
それらの予測は、未ラベルの例の大きなセットに注釈付けするために使われる。
最後に、得られた訓練セットの並列アノテーションに基づいてマルチタスクトレーニングを行い、注釈者固有の頭部予測を平均して最終スコアを得る。
ニューラルネットワークモデルは、EVALITA 2020におけるAcCompl-it共有タスクのコンテキストにおいて、この手順を使用して微調整される。
関連論文リスト
- ZZU-NLP at SIGHAN-2024 dimABSA Task: Aspect-Based Sentiment Analysis with Coarse-to-Fine In-context Learning [0.36332383102551763]
DimABSAタスクはレストランレビューに微妙な感情強度予測を必要とする。
そこで本稿では,DimABSAタスクに対するBaichuan2-7Bモデルに基づく大まかなインコンテクスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-22T02:54:46Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Phoneme Segmentation Using Self-Supervised Speech Models [13.956691231452336]
音素セグメンテーションのタスクに伝達学習を適用し、タスクの自己教師型事前学習において学習した表現の有用性を実証する。
我々のモデルは、事前学習で学んだ特徴を操作する戦略的に配置された畳み込みによるトランスフォーマースタイルのエンコーダを拡張している。
論文 参考訳(メタデータ) (2022-11-02T19:57:31Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
言語モデルは、テキストコーパスの教師なしトレーニングからさまざまな能力を学ぶことができる。
人間がラベル付きデータを提供するよりも選択肢を選択する方が簡単であり、事前の作業はそのような選好比較から報酬モデルをトレーニングすることで最先端のパフォーマンスを達成した。
能動的学習とリスク-逆強化学習を用いてサンプル効率とロバスト性を向上させる不確実性推定によるこれらの問題に対処することを模索する。
論文 参考訳(メタデータ) (2022-03-14T20:13:21Z) - Optimizing Active Learning for Low Annotation Budgets [6.753808772846254]
ディープラーニングでは、アクティブな学習は通常、微調整によって連続した深層モデルを更新する反復的なプロセスとして実装される。
移行学習にインスパイアされたアプローチを用いてこの問題に対処する。
本稿では,ALプロセスの反復性を利用してより堅牢なサンプルを抽出する新しい取得関数を提案する。
論文 参考訳(メタデータ) (2022-01-18T18:53:10Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - Few-shot learning through contextual data augmentation [74.20290390065475]
機械翻訳モデルは、時間とともに性能を維持するために新しいデータに適応する必要がある。
一つの例から5つの例への適応が可能であることを示す。
本モデルでは,平均313個の並列例でトレーニングした基準システムよりも精度がよいことを示す。
論文 参考訳(メタデータ) (2021-03-31T09:05:43Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。