論文の概要: Few-shot learning through contextual data augmentation
- arxiv url: http://arxiv.org/abs/2103.16911v1
- Date: Wed, 31 Mar 2021 09:05:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-02 00:49:28.682421
- Title: Few-shot learning through contextual data augmentation
- Title(参考訳): 文脈データ拡張による数ショット学習
- Authors: Farid Arthaud, Rachel Bawden and Alexandra Birch
- Abstract要約: 機械翻訳モデルは、時間とともに性能を維持するために新しいデータに適応する必要がある。
一つの例から5つの例への適応が可能であることを示す。
本モデルでは,平均313個の並列例でトレーニングした基準システムよりも精度がよいことを示す。
- 参考スコア(独自算出の注目度): 74.20290390065475
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Machine translation (MT) models used in industries with constantly changing
topics, such as translation or news agencies, need to adapt to new data to
maintain their performance over time. Our aim is to teach a pre-trained MT
model to translate previously unseen words accurately, based on very few
examples. We propose (i) an experimental setup allowing us to simulate novel
vocabulary appearing in human-submitted translations, and (ii) corresponding
evaluation metrics to compare our approaches. We extend a data augmentation
approach using a pre-trained language model to create training examples with
similar contexts for novel words. We compare different fine-tuning and data
augmentation approaches and show that adaptation on the scale of one to five
examples is possible. Combining data augmentation with randomly selected
training sentences leads to the highest BLEU score and accuracy improvements.
Impressively, with only 1 to 5 examples, our model reports better accuracy
scores than a reference system trained with on average 313 parallel examples.
- Abstract(参考訳): 機械翻訳(MT)モデルは、翻訳やニュース代理店など、常に変化するトピックを持つ産業において、時間とともにパフォーマンスを維持するために新しいデータに適応する必要がある。
本研究の目的は,事前学習したMTモデルを用いて,未知語を正確に翻訳することである。
我々は,人間の翻訳に現れる新しい語彙をシミュレートできる実験的な設定を提案し,(ii)アプローチを比較するために対応する評価指標を提案する。
我々は、事前学習言語モデルを用いてデータ拡張アプローチを拡張し、新しい単語に類似した文脈でトレーニング例を作成する。
異なる微調整法とデータ拡張法を比較し,1~5例の適応が可能であることを示す。
ランダムに選択されたトレーニング文とデータ拡張を組み合わせることで、最も高いbleuスコアと正確性が向上する。
印象的なことに,1~5例のモデルでは,平均313例でトレーニングした基準システムよりも精度の高いスコアが報告されている。
関連論文リスト
- Ensembling Finetuned Language Models for Text Classification [55.15643209328513]
ファインタニング(英: Finetuning)は、特定のタスクに事前訓練されたモデルを適用するために、様々なコミュニティで一般的なプラクティスである。
ニューラルネットワークのアンサンブルは、通常、パフォーマンスを高め、信頼性の高い不確実性推定を提供するために使用される。
6つのデータセット上の5つの大きめのモデルから予測されたメタデータセットを提示し、異なるアンサンブル戦略の結果を報告する。
論文 参考訳(メタデータ) (2024-10-25T09:15:54Z) - Segment-Based Interactive Machine Translation for Pre-trained Models [2.0871483263418806]
対話型機械翻訳環境におけるLLM(Pre-trained large language model)の利用について検討する。
システムは、ユーザが各イテレーションで提供するフィードバックを使って、インタラクティブに完璧な翻訳を生成する。
我々は,mBART,mT5,SoTA(State-of-the-art)機械翻訳モデルの性能を,ユーザ作業に関するベンチマークデータセット上で比較した。
論文 参考訳(メタデータ) (2024-07-09T16:04:21Z) - Enhancing Translation Accuracy of Large Language Models through Continual Pre-Training on Parallel Data [13.587157318352869]
本稿では,並列データに対して,事前学習された大規模言語モデルを継続的に事前学習する2相学習手法を提案する。
日本語と英語と日本語の13種類のテストセットを用いて,これらの手法の評価を行った。
論文 参考訳(メタデータ) (2024-07-03T14:23:36Z) - Investigating Pre-trained Language Models on Cross-Domain Datasets, a
Step Closer to General AI [0.8889304968879164]
本研究では、事前学習された言語モデルが、異なる非言語タスクに一般化する能力について検討する。
私たちが使用した4つの事前訓練モデル、T5、BART、BERT、GPT-2は優れた結果を得た。
論文 参考訳(メタデータ) (2023-06-21T11:55:17Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Improving Few-Shot Performance of Language Models via Nearest Neighbor
Calibration [12.334422701057674]
In-context Learning のための近辺校正フレームワークを提案する。
インコンテキスト学習パラダイムは、トレーニングインスタンスを推論する際に誤ったラベルを生成するという現象にインスパイアされている。
テキスト分類タスクの多種多様な実験により,本手法はテキスト内学習を大幅に改善することが示された。
論文 参考訳(メタデータ) (2022-12-05T12:49:41Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
CsaNMT(Continuous Semantic Augmentation)と呼ばれる新しいデータ拡張パラダイムを提案する。
CsaNMTは各トレーニングインスタンスを、同じ意味の下で適切なリテラル式をカバーできる隣接領域で拡張する。
論文 参考訳(メタデータ) (2022-04-14T08:16:28Z) - Improving Neural Machine Translation by Bidirectional Training [85.64797317290349]
我々は、ニューラルネットワーク翻訳のためのシンプルで効果的な事前学習戦略である双方向トレーニング(BiT)を提案する。
具体的には、初期モデルのパラメータを双方向に更新し、正常にモデルを調整する。
実験の結果,BiTは8つの言語対上の15の翻訳タスクに対して,SOTAニューラルマシン翻訳性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-16T07:58:33Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
非パラメトリックニューラルネットワークモデル(NLM)は、外部データストアを用いてテキストの予測分布を学習する。
比較性能を維持しながら、推論速度の最大6倍の高速化を実現する方法を示す。
論文 参考訳(メタデータ) (2021-09-09T12:32:28Z) - UmBERTo-MTSA @ AcCompl-It: Improving Complexity and Acceptability
Prediction with Multi-task Learning on Self-Supervised Annotations [0.0]
本研究は,ラベル付きデータの適度な使用量のみの学習モデルの性能向上に使用される,自己教師型データ拡張手法について述べる。
神経言語モデルは、EVALITA 2020におけるAcCompl-it共有タスクのコンテキストにおいて、この手順を用いて微調整される。
論文 参考訳(メタデータ) (2020-11-10T15:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。