Dynamic Embeddings for Interaction Prediction
- URL: http://arxiv.org/abs/2011.05208v2
- Date: Fri, 26 Feb 2021 20:35:36 GMT
- Title: Dynamic Embeddings for Interaction Prediction
- Authors: Zekarias T. Kefato and Sarunas Girdzijauskas and Nasrullah Sheikh and
Alberto Montresor
- Abstract summary: In recommender systems (RSs), predicting the next item that a user interacts with is critical for user retention.
Recent studies have shown the effectiveness of modeling the mutual interactions between users and items using separate user and item embeddings.
We propose a novel method called DeePRed that addresses some of their limitations.
- Score: 2.5758502140236024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recommender systems (RSs), predicting the next item that a user interacts
with is critical for user retention. While the last decade has seen an
explosion of RSs aimed at identifying relevant items that match user
preferences, there is still a range of aspects that could be considered to
further improve their performance. For example, often RSs are centered around
the user, who is modeled using her recent sequence of activities. Recent
studies, however, have shown the effectiveness of modeling the mutual
interactions between users and items using separate user and item embeddings.
Building on the success of these studies, we propose a novel method called
DeePRed that addresses some of their limitations. In particular, we avoid
recursive and costly interactions between consecutive short-term embeddings by
using long-term (stationary) embeddings as a proxy. This enable us to train
DeePRed using simple mini-batches without the overhead of specialized
mini-batches proposed in previous studies. Moreover, DeePRed's effectiveness
comes from the aforementioned design and a multi-way attention mechanism that
inspects user-item compatibility. Experiments show that DeePRed outperforms the
best state-of-the-art approach by at least 14% on next item prediction task,
while gaining more than an order of magnitude speedup over the best performing
baselines. Although this study is mainly concerned with temporal interaction
networks, we also show the power and flexibility of DeePRed by adapting it to
the case of static interaction networks, substituting the short- and long-term
aspects with local and global ones.
Related papers
- Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction [68.90783662117936]
Click-through Rate (CTR) prediction is crucial for online personalization platforms.
Recent advancements have shown that modeling rich user behaviors can significantly improve the performance of CTR prediction.
We propose Multi-granularity Interest Retrieval and Refinement Network (MIRRN)
arXiv Detail & Related papers (2024-11-22T15:29:05Z) - Sequential Recommendation on Temporal Proximities with Contrastive
Learning and Self-Attention [3.7182810519704095]
Sequential recommender systems identify user preferences from their past interactions to predict subsequent items optimally.
Recent models often neglect similarities in users' actions that occur implicitly among users during analogous timeframes.
We propose a sequential recommendation model called TemProxRec, which includes contrastive learning and self-attention methods to consider temporal proximities.
arXiv Detail & Related papers (2024-02-15T08:33:16Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
We propose a highly scalable hybrid learning model that consists of an RNN learning framework and an attention model.
As a novel optimization step, we fit multiple short user sequences in a single RNN pass within a training batch, by solving a greedy knapsack problem on the fly.
We also explore the use of off-policy reinforcement learning in multi-session personalized search ranking.
arXiv Detail & Related papers (2022-02-01T06:52:40Z) - From Implicit to Explicit feedback: A deep neural network for modeling
sequential behaviours and long-short term preferences of online users [3.464871689508835]
Implicit and explicit feedback have different roles for a useful recommendation.
We go from the hypothesis that a user's preference at a time is a combination of long-term and short-term interests.
arXiv Detail & Related papers (2021-07-26T16:59:20Z) - Context-aware short-term interest first model for session-based
recommendation [0.0]
We propose a context-aware short-term interest first model (CASIF)
The aim of this paper is improve the accuracy of recommendations by combining context and short-term interest.
In the end, the short-term and long-term interest are combined as the final interest and multiplied by the candidate vector to obtain the recommendation probability.
arXiv Detail & Related papers (2021-03-29T11:36:00Z) - Dynamic Memory based Attention Network for Sequential Recommendation [79.5901228623551]
We propose a novel long sequential recommendation model called Dynamic Memory-based Attention Network (DMAN)
It segments the overall long behavior sequence into a series of sub-sequences, then trains the model and maintains a set of memory blocks to preserve long-term interests of users.
Based on the dynamic memory, the user's short-term and long-term interests can be explicitly extracted and combined for efficient joint recommendation.
arXiv Detail & Related papers (2021-02-18T11:08:54Z) - Multi-Interactive Attention Network for Fine-grained Feature Learning in
CTR Prediction [48.267995749975476]
In the Click-Through Rate (CTR) prediction scenario, user's sequential behaviors are well utilized to capture the user interest.
Existing methods mostly utilize attention on the behavior of users, which is not always suitable for CTR prediction.
We propose a Multi-Interactive Attention Network (MIAN) to comprehensively extract the latent relationship among all kinds of fine-grained features.
arXiv Detail & Related papers (2020-12-13T05:46:19Z) - Modeling Long-Term and Short-Term Interests with Parallel Attentions for
Session-based Recommendation [17.092823992007794]
Session-based recommenders typically explore the users' evolving interests.
Recent advances in attention mechanisms have led to state-of-the-art methods for solving this task.
We propose a novel Parallel Attention Network model (PAN) for Session-based Recommendation.
arXiv Detail & Related papers (2020-06-27T11:47:51Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
We propose a temporal gating methodology to improve attention mechanism and recurrent units.
We also propose a Multi-hop Time-aware Attentive Memory network to integrate long-term and short-term preferences.
Our approach is scalable for candidate retrieval tasks and can be viewed as a non-linear generalization of latent factorization for dot-product based Top-K recommendation.
arXiv Detail & Related papers (2020-05-18T11:29:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.