論文の概要: Dirichlet policies for reinforced factor portfolios
- arxiv url: http://arxiv.org/abs/2011.05381v3
- Date: Fri, 25 Jun 2021 13:51:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 08:16:52.068119
- Title: Dirichlet policies for reinforced factor portfolios
- Title(参考訳): 強化因子ポートフォリオに対するディリクレポリシー
- Authors: Eric Andr\'e and Guillaume Coqueret
- Abstract要約: 本稿では、要素投資と強化学習(RL)を組み合わせることを目的とする。
エージェントは、企業の特性に依存する逐次ランダムアロケーションを通じて学習する。
パラメトリックな選択肢の幅広い範囲において、我々の結果は、RLベースのポートフォリオが均等に重み付けられた(1/N)アロケーションに非常に近いことを示している。
- 参考スコア(独自算出の注目度): 1.3706331473063877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article aims to combine factor investing and reinforcement learning
(RL). The agent learns through sequential random allocations which rely on
firms' characteristics. Using Dirichlet distributions as the driving policy, we
derive closed forms for the policy gradients and analytical properties of the
performance measure. This enables the implementation of REINFORCE methods,
which we perform on a large dataset of US equities. Across a large range of
parametric choices, our result indicates that RL-based portfolios are very
close to the equally-weighted (1/N) allocation. This implies that the agent
learns to be *agnostic* with regard to factors, which can partly be explained
by cross-sectional regressions showing a strong time variation in the
relationship between returns and firm characteristics.
- Abstract(参考訳): 本稿では、要素投資と強化学習(RL)を組み合わせることを目的とする。
エージェントは、企業の特性に依存する逐次ランダム割り当てを通じて学習する。
ディリクレ分布を駆動方針として用いることにより,性能尺度の政策勾配および分析特性の閉形式を導出する。
これにより、米国株式の大きなデータセット上で実行されるREINFORCEメソッドの実装が可能になる。
その結果、rlベースのポートフォリオは均等に重み付けされた(1/n)の割り当てに非常に近いことがわかった。
これは、エージェントが因子に関して*診断的*であることを学ぶことを意味し、これは部分的には、リターンと強みの関係において強い時間変化を示す断面回帰によって説明できる。
関連論文リスト
- Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - Combining Transformer based Deep Reinforcement Learning with
Black-Litterman Model for Portfolio Optimization [0.0]
モデルフリーのアルゴリズムとして、深層強化学習(DRL)エージェントは、教師なしの方法で環境と対話することで学習し、決定する。
DRLエージェントとBlack-Litterman (BL)モデルを組み合わせたハイブリッドポートフォリオ最適化モデルを提案する。
我々のDRLエージェントは、様々な比較ポートフォリオ選択戦略と代替DRLフレームワークを、累積リターンで少なくとも42%上回っている。
論文 参考訳(メタデータ) (2024-02-23T16:01:37Z) - Beyond Expected Return: Accounting for Policy Reproducibility when
Evaluating Reinforcement Learning Algorithms [9.649114720478872]
強化学習(Reinforcement Learning, RL)における多くの応用は、環境にノイズオリティが存在する。
これらの不確実性は、ひとつのロールアウトから別のロールアウトまで、まったく同じポリシーを別々に実行します。
RL の一般的な評価手順は、その分布の拡散を考慮しない期待された戻り値のみを用いて、連続した戻り値分布を要約する。
我々の研究は、この拡散をポリシーとして定義している: 何度もロールアウトするときに同様のパフォーマンスを得るポリシーの能力は、いくつかの現実世界のアプリケーションにおいて重要な特性である。
論文 参考訳(メタデータ) (2023-12-12T11:22:31Z) - Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization [63.554226552130054]
マルチエージェント強化学習(MARL)における一般化の課題
エージェントが未確認のコプレイヤーに影響される程度は、エージェントのポリシーと特定のシナリオに依存する。
与えられたシナリオと環境におけるエージェント間の相互作用強度を定量化する指標であるLoI(Level of Influence)を提示する。
論文 参考訳(メタデータ) (2023-10-11T06:09:26Z) - Truncating Trajectories in Monte Carlo Reinforcement Learning [48.97155920826079]
強化学習(RL)において、エージェントは未知の環境で動作し、外部報酬信号の期待累積割引和を最大化する。
我々は,異なる長さの軌跡の収集につながるアプリオリ予算配分戦略を提案する。
軌道の適切な切り離しが性能向上に成功することを示す。
論文 参考訳(メタデータ) (2023-05-07T19:41:57Z) - On Pitfalls of $\textit{RemOve-And-Retrain}$: Data Processing Inequality
Perspective [5.8010446129208155]
本研究では,RemOve-And-Retrain(ROAR)手法の信頼性について検討した。
理論的基礎と実証的研究から得られた知見から、決定関数に関するより少ない情報を含む属性がROARベンチマークにおいて優れた結果をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-26T21:43:42Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
分散エージェントのネットワークによって達成可能な性能を導出し,通信制約や回帰問題を解消し,適応的に解決する。
エージェントによって最適化に必要なパラメータをオンラインで学習できる最適化アロケーション戦略を考案する。
論文 参考訳(メタデータ) (2023-04-07T13:41:08Z) - Distributional constrained reinforcement learning for supply chain
optimization [0.0]
本稿では、強化学習における信頼性の高い制約満足度のための新しいアプローチである分散制約政策最適化(DCPO)を紹介する。
我々は、DCPOがRLポリシーの収束率を改善し、トレーニングの終了までに信頼性の高い制約満足度を確保することを示す。
論文 参考訳(メタデータ) (2023-02-03T13:43:02Z) - Reinforcement Learning with Intrinsic Affinity for Personalized Asset
Management [0.0]
我々は,戦略がグローバルな本質的な親和性を持つことを保証する正規化手法を開発した。
私たちは、本質的な親和性を利用して、本質的な解釈を可能にします。
我々は、RLエージェントが特定のパーソナリティプロファイルに対する個々のポリシーを編成し、高いリターンを達成するためにどのように訓練できるかを実証する。
論文 参考訳(メタデータ) (2022-04-20T04:33:32Z) - Distributional Reinforcement Learning for Multi-Dimensional Reward
Functions [91.88969237680669]
多次元分布DQN(MD3QN)を導入し、複数の報酬源からの共振分布をモデル化する。
関節分布モデリングの副産物として、MD3QNは各報酬源に対するリターンのランダム性を捉えることができる。
実験では,リッチな相関型報酬関数を持つ環境下での連立戻り分布を精度良くモデル化した。
論文 参考訳(メタデータ) (2021-10-26T11:24:23Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。