論文の概要: Learning for Integer-Constrained Optimization through Neural Networks
with Limited Training
- arxiv url: http://arxiv.org/abs/2011.05399v1
- Date: Tue, 10 Nov 2020 21:17:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 08:35:17.191720
- Title: Learning for Integer-Constrained Optimization through Neural Networks
with Limited Training
- Title(参考訳): 制限付きニューラルネットワークによる整数制約最適化の学習
- Authors: Zhou Zhou, Shashank Jere, Lizhong Zheng, Lingjia Liu
- Abstract要約: 我々は、その構成成分の機能の観点から完全に解釈可能な、対称的で分解されたニューラルネットワーク構造を導入する。
整数制約の根底にあるパターンを活用することで、導入されたニューラルネットワークは、限られたトレーニングでより優れた一般化性能を提供する。
提案手法は, 半分解フレームワークにさらに拡張可能であることを示す。
- 参考スコア(独自算出の注目度): 28.588195947764188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate a neural network-based learning approach
towards solving an integer-constrained programming problem using very limited
training. To be specific, we introduce a symmetric and decomposed neural
network structure, which is fully interpretable in terms of the functionality
of its constituent components. By taking advantage of the underlying pattern of
the integer constraint, as well as of the affine nature of the objective
function, the introduced neural network offers superior generalization
performance with limited training, as compared to other generic neural network
structures that do not exploit the inherent structure of the integer
constraint. In addition, we show that the introduced decomposed approach can be
further extended to semi-decomposed frameworks. The introduced learning
approach is evaluated via the classification/symbol detection task in the
context of wireless communication systems where available training sets are
usually limited. Evaluation results demonstrate that the introduced learning
strategy is able to effectively perform the classification/symbol detection
task in a wide variety of wireless channel environments specified by the 3GPP
community.
- Abstract(参考訳): 本稿では,整数制約付きプログラミング問題に対するニューラルネットワークに基づく学習手法について,非常に限定的な学習法を用いて検討する。
具体的には、その構成成分の機能の観点から完全に解釈可能な、対称的で分解されたニューラルネットワーク構造を導入する。
整数制約の基本的なパターンと目的関数のアフィンの性質を生かして、導入されたニューラルネットワークは、整数制約の固有の構造を利用しない他の一般的なニューラルネットワーク構造と比較して、限られたトレーニングで優れた一般化性能を提供する。
さらに,導入された分解アプローチを半分解フレームワークにも拡張できることを示す。
一般に利用可能なトレーニングセットが制限された無線通信システムのコンテキストにおいて、導入した学習アプローチは分類/記号検出タスクによって評価される。
評価の結果,導入した学習戦略は,3gppコミュニティが指定する幅広い無線チャネル環境において,分類・記号検出タスクを効果的に実行できることがわかった。
関連論文リスト
- NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
シンボリック・ルール学習者は解釈可能な解を生成するが、入力を記号的に符号化する必要がある。
ニューロシンボリックアプローチは、ニューラルネットワークを使用して生データを潜在シンボリック概念にマッピングすることで、この問題を克服する。
我々は,ニューラルネットワークを記号学習者と共同でトレーニングする,スケーラブルで高速なエンドツーエンドアプローチであるNeuralFastLASを紹介する。
論文 参考訳(メタデータ) (2023-10-08T12:33:42Z) - Fundamental limits of overparametrized shallow neural networks for
supervised learning [11.136777922498355]
本研究では,教師ネットワークが生成した入力-出力ペアから学習した2層ニューラルネットワークについて検討する。
この結果は,トレーニングデータとネットワーク重み間の相互情報,すなわちベイズ最適一般化誤差に関連する境界の形で得られる。
論文 参考訳(メタデータ) (2023-07-11T08:30:50Z) - The Integrated Forward-Forward Algorithm: Integrating Forward-Forward
and Shallow Backpropagation With Local Losses [0.0]
本稿では,FFAと浅部バックプロパゲーションの双方の強度を組み合わせた統合手法を提案する。
Integrated Forward-Forward Algorithmでニューラルネットワークをトレーニングすることは、ロバストネスのような有利な特徴を持つニューラルネットワークを生成する可能性を秘めている。
論文 参考訳(メタデータ) (2023-05-22T12:10:47Z) - Credit Assignment for Trained Neural Networks Based on Koopman Operator
Theory [3.130109807128472]
ニューラルネットワークのクレジット割り当て問題は、最終的な出力に対する各ネットワークコンポーネントのクレジットを評価することを指す。
本稿では,ニューラルネットワークの信頼割当問題に対する線形力学の代替的視点について述べる。
典型的なニューラルネットワークを用いた実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-12-02T06:34:27Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
勾配流(GF)を用いた広帯域ニューラルネットワーク(NN)の最適化について検討する。
入力次元がトレーニングセットのサイズ以下である場合、トレーニング損失はGFの下での線形速度で0に収束することを示す。
また、ニューラル・タンジェント・カーネル(NTK)システムとは異なり、我々の多層モデルは特徴学習を示し、NTKモデルよりも優れた一般化性能が得られることを実証的に示す。
論文 参考訳(メタデータ) (2022-04-22T15:56:43Z) - Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks [4.153804257347222]
本稿では、視覚的手がかりから部分全体階層を表現できるフレームワークであるAgglomeratorについて述べる。
本研究では,SmallNORB,MNIST,FashionMNIST,CIFAR-10,CIFAR-100などの共通データセットを用いて評価を行った。
論文 参考訳(メタデータ) (2022-03-07T10:56:13Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。