Scribble-Supervised Semantic Segmentation by Random Walk on Neural
Representation and Self-Supervision on Neural Eigenspace
- URL: http://arxiv.org/abs/2011.05621v2
- Date: Thu, 12 Nov 2020 05:53:26 GMT
- Title: Scribble-Supervised Semantic Segmentation by Random Walk on Neural
Representation and Self-Supervision on Neural Eigenspace
- Authors: Zhiyi Pan, Peng Jiang, Changhe Tu
- Abstract summary: This work aims to achieve semantic segmentation supervised by scribble label directly without auxiliary information and other intermediate manipulation.
We impose diffusion on neural representation by random walk and consistency on neural eigenspace by self-supervision.
The results demonstrate the superiority of the proposed method and are even comparable to some full-label supervised ones.
- Score: 10.603823180750446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scribble-supervised semantic segmentation has gained much attention recently
for its promising performance without high-quality annotations. Many approaches
have been proposed. Typically, they handle this problem to either introduce a
well-labeled dataset from another related task, turn to iterative refinement
and post-processing with the graphical model, or manipulate the scribble label.
This work aims to achieve semantic segmentation supervised by scribble label
directly without auxiliary information and other intermediate manipulation.
Specifically, we impose diffusion on neural representation by random walk and
consistency on neural eigenspace by self-supervision, which forces the neural
network to produce dense and consistent predictions over the whole dataset. The
random walk embedded in the network will compute a probabilistic transition
matrix, with which the neural representation diffused to be uniform. Moreover,
given the probabilistic transition matrix, we apply the self-supervision on its
eigenspace for consistency in the image's main parts. In addition to comparing
the common scribble dataset, we also conduct experiments on the modified
datasets that randomly shrink and even drop the scribbles on image objects. The
results demonstrate the superiority of the proposed method and are even
comparable to some full-label supervised ones. The code and datasets are
available at https://github.com/panzhiyi/RW-SS.
Related papers
- Revisiting Surgical Instrument Segmentation Without Human Intervention: A Graph Partitioning View [7.594796294925481]
We propose an unsupervised method by reframing the video frame segmentation as a graph partitioning problem.
A self-supervised pre-trained model is firstly leveraged as a feature extractor to capture high-level semantic features.
On the "deep" eigenvectors, a surgical video frame is meaningfully segmented into different modules like tools and tissues, providing distinguishable semantic information.
arXiv Detail & Related papers (2024-08-27T05:31:30Z) - TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction [61.295716741720284]
TokenUnify is a novel pretraining method that integrates random token prediction, next-token prediction, and next-all token prediction.
Cooperated with TokenUnify, we have assembled a large-scale electron microscopy (EM) image dataset with ultra-high resolution.
This dataset includes over 120 million annotated voxels, making it the largest neuron segmentation dataset to date.
arXiv Detail & Related papers (2024-05-27T05:45:51Z) - A Lightweight Clustering Framework for Unsupervised Semantic
Segmentation [28.907274978550493]
Unsupervised semantic segmentation aims to categorize each pixel in an image into a corresponding class without the use of annotated data.
We propose a lightweight clustering framework for unsupervised semantic segmentation.
Our framework achieves state-of-the-art results on PASCAL VOC and MS COCO datasets.
arXiv Detail & Related papers (2023-11-30T15:33:42Z) - Extracting Semantic Knowledge from GANs with Unsupervised Learning [65.32631025780631]
Generative Adversarial Networks (GANs) encode semantics in feature maps in a linearly separable form.
We propose a novel clustering algorithm, named KLiSH, which leverages the linear separability to cluster GAN's features.
KLiSH succeeds in extracting fine-grained semantics of GANs trained on datasets of various objects.
arXiv Detail & Related papers (2022-11-30T03:18:16Z) - Measuring the Interpretability of Unsupervised Representations via
Quantized Reverse Probing [97.70862116338554]
We investigate the problem of measuring interpretability of self-supervised representations.
We formulate the latter as estimating the mutual information between the representation and a space of manually labelled concepts.
We use our method to evaluate a large number of self-supervised representations, ranking them by interpretability.
arXiv Detail & Related papers (2022-09-07T16:18:50Z) - Scribble-Supervised Semantic Segmentation by Uncertainty Reduction on
Neural Representation and Self-Supervision on Neural Eigenspace [21.321005898976253]
Scribble-supervised semantic segmentation has gained much attention recently for its promising performance without high-quality annotations.
This work aims to achieve semantic segmentation by scribble annotations directly without extra information and other limitations.
We propose holistic operations, including minimizing entropy and a network embedded random walk on neural representation to reduce uncertainty.
arXiv Detail & Related papers (2021-02-19T12:33:57Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.