Efficient and Continuous Microwave Photodetection in Hybrid
Cavity-Semiconductor Nanowire Double Quantum Dot Diodes
- URL: http://arxiv.org/abs/2011.05736v2
- Date: Mon, 3 Jan 2022 10:14:00 GMT
- Title: Efficient and Continuous Microwave Photodetection in Hybrid
Cavity-Semiconductor Nanowire Double Quantum Dot Diodes
- Authors: Waqar Khan and Patrick P. Potts and Sebastian Lehmann and Claes
Thelander and Kimberly A. Dick and Peter Samuelsson and Ville F. Maisi
- Abstract summary: Single photon detectors are key for time-correlated photon counting applications.
Here we show how itinerant microwave photons can be efficiently converted to electrical current in a high-quality, semiconducting nanowire double quantum dot.
Our results pave the way for photodiodes with single-shot microwave photon detection, at the theoretically predicted unit efficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Single photon detectors are key for time-correlated photon counting
applications [1] and enable a host of emerging optical quantum information
technologies [2]. So far, the leading approach for continuous and efficient
single-photon detection in the optical domain has been based on semiconductor
photodiodes [3]. However, there is a paucity of efficient and continuous
single-photon detectors in the microwave regime, because photon energies are
four to five orders of magnitude lower therein and conventional photodiodes do
not have that sensitivity. Here we tackle this gap and demonstrate how
itinerant microwave photons can be efficiently and continuously converted to
electrical current in a high-quality, semiconducting nanowire double quantum
dot that is resonantly coupled to a cavity. In particular, in our detection
scheme, an absorbed photon gives rise to a single electron tunneling event
through the double dot, with a conversion efficiency reaching 6 %. Our results
pave the way for photodiodes with single-shot microwave photon detection, at
the theoretically predicted unit efficiency [4].
Related papers
- High-efficiency microwave photodetection by cavity coupled double dots with single cavity-photon sensitivity [0.0]
A superconducting cavity-coupled double quantum dot (DQD) photodiode achieves a maximum photon-to-electron conversion efficiency of 25% in the microwave domain.
With a higher-quality-factor cavity, our device measures microwave signals down to 100 aW power level and achieves sensitivity to probe microwave signals with one photon at a time in the cavity.
arXiv Detail & Related papers (2024-06-05T08:23:19Z) - Efficient Microwave Photon to Electron Conversion in a High Impedance Quantum Circuit [0.0]
We demonstrate an efficient and continuous microwave photon to electron converter with large quantum efficiency ($83%$) and low dark current.
These unique properties are enabled by the use of a high kinetic inductance disordered superconductor, granular aluminium.
arXiv Detail & Related papers (2023-12-21T17:44:33Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Three-photon excitation of quantum two-level systems [0.0]
We demonstrate that semiconductor quantum dots can be excited efficiently in a resonant three-photon process.
Time-dependent Floquet theory is used to quantify the strength of the multi-photon processes.
We exploit this technique to probe intrinsic properties of InGaN quantum dots.
arXiv Detail & Related papers (2022-02-04T09:20:24Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Entangled photon pairs from quantum dots embedded in a self-aligned
cavity [0.2493740042317776]
We introduce a scalable photonic platform that enables efficient generation of entangled photon pairs from a semiconductor quantum dot.
We experimentally show collection efficiency of 0.17 combined with a Purcell enhancement of up to 1.7 in the pair emission process.
arXiv Detail & Related papers (2020-10-04T11:55:58Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.