Efficient Microwave Photon to Electron Conversion in a High Impedance Quantum Circuit
- URL: http://arxiv.org/abs/2312.14065v2
- Date: Wed, 06 Nov 2024 10:40:21 GMT
- Title: Efficient Microwave Photon to Electron Conversion in a High Impedance Quantum Circuit
- Authors: Ognjen Stanisavljević, Jean-Côme Philippe, Julien Gabelli, Marco Aprili, Jérôme Estève, Julien Basset,
- Abstract summary: We demonstrate an efficient and continuous microwave photon to electron converter with large quantum efficiency ($83%$) and low dark current.
These unique properties are enabled by the use of a high kinetic inductance disordered superconductor, granular aluminium.
- Score: 0.0
- License:
- Abstract: We demonstrate an efficient and continuous microwave photon to electron converter with large quantum efficiency ($83\%$) and low dark current. These unique properties are enabled by the use of a high kinetic inductance disordered superconductor, granular aluminium, to enhance light-matter interaction and the coupling of microwave photons to electron tunneling processes. As a consequence of strong coupling, we observe both linear and non-linear photon-assisted processes where 2, 3 and 4 photons are converted into a single electron at unprecedentedly low light intensities. Theoretical predictions, which require quantization of the photonic field within a quantum master equation framework, reproduce well the experimental data. This experimental advancement brings the foundation for high-efficiency detection of individual microwave photons using charge-based detection techniques.
Related papers
- Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - Continuous microwave photon counting by semiconductor-superconductor
hybrids [0.19791587637442667]
We present a continuous microwave photon counter based on superconducting cavity-coupled semiconductor quantum dots.
The device detects both single and multiple-photon absorption events independently, thanks to the energy tunability of a two-level double-dot absorber.
arXiv Detail & Related papers (2024-01-12T15:07:26Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Integrated photonics enables continuous-beam electron phase modulation [0.0]
Integrated photonics can efficiently interface free electrons and light.
We demonstrate coherent phase modulation of an electron beam using a silicon nitride microresonator driven by a continuous-wave laser.
Our results highlight the potential of integrated photonics to efficiently interface free electrons and light.
arXiv Detail & Related papers (2021-05-08T16:17:01Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Efficient and Continuous Microwave Photodetection in Hybrid
Cavity-Semiconductor Nanowire Double Quantum Dot Diodes [0.0]
Single photon detectors are key for time-correlated photon counting applications.
Here we show how itinerant microwave photons can be efficiently converted to electrical current in a high-quality, semiconducting nanowire double quantum dot.
Our results pave the way for photodiodes with single-shot microwave photon detection, at the theoretically predicted unit efficiency.
arXiv Detail & Related papers (2020-11-11T12:36:42Z) - Experimental reconstruction of the few-photon nonlinear scattering
matrix from a single quantum dot in a nanophotonic waveguide [5.673311327126229]
Coherent photon-emitter interfaces offer a way to mediate efficient nonlinear photon-photon interactions.
We experimentally study the case of a two-level emitter, a quantum dot, coupled to a single optical mode in a nanophotonic waveguide.
arXiv Detail & Related papers (2020-05-30T13:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.