論文の概要: Learning User Representations with Hypercuboids for Recommender Systems
- arxiv url: http://arxiv.org/abs/2011.05742v1
- Date: Wed, 11 Nov 2020 12:50:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 01:00:21.309456
- Title: Learning User Representations with Hypercuboids for Recommender Systems
- Title(参考訳): Recommenderシステムのためのハイパーキューブを用いたユーザ表現学習
- Authors: Shuai Zhang, Huoyu Liu, Aston Zhang, Yue Hu, Ce Zhang, Yumeng Li,
Tanchao Zhu, Shaojian He, Wenwu Ou
- Abstract要約: 我々のモデルは、空間内の一点ではなく、超立方体としてユーザーの興味を明示的にモデル化する。
ユーザの興味の多様性を捉える能力を高めるために,2種類のハイパークボイドを提案する。
また、ユーザのアクティビティシーケンス(例えば、購入とレート)をキャプチャすることで、ユーザの超立方体学習を促進するために、ニューラルアーキテクチャも提案されている。
- 参考スコア(独自算出の注目度): 26.80987554753327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling user interests is crucial in real-world recommender systems. In this
paper, we present a new user interest representation model for personalized
recommendation. Specifically, the key novelty behind our model is that it
explicitly models user interests as a hypercuboid instead of a point in the
space. In our approach, the recommendation score is learned by calculating a
compositional distance between the user hypercuboid and the item. This helps to
alleviate the potential geometric inflexibility of existing collaborative
filtering approaches, enabling a greater extent of modeling capability.
Furthermore, we present two variants of hypercuboids to enhance the capability
in capturing the diversities of user interests. A neural architecture is also
proposed to facilitate user hypercuboid learning by capturing the activity
sequences (e.g., buy and rate) of users. We demonstrate the effectiveness of
our proposed model via extensive experiments on both public and commercial
datasets. Empirical results show that our approach achieves very promising
results, outperforming existing state-of-the-art.
- Abstract(参考訳): 現実世界のレコメンデーションシステムでは、ユーザの関心のモデリングが重要です。
本稿では,パーソナライズされたレコメンデーションのための新しいユーザ関心表現モデルを提案する。
特に、私たちのモデルの背後にある重要な新しさは、空間内の点ではなく、ハイパーキューブとしてユーザーの関心を明示的にモデル化することです。
提案手法では,ユーザのハイパーキューブとアイテムとの合成距離を計算することで推薦スコアを学習する。
これにより、既存の協調フィルタリングアプローチの潜在的な幾何学的非フレキシビリティが軽減され、モデリング能力が大幅に向上する。
さらに,ユーザの興味の多様性を捉える能力を高めるために,2種類のハイパーキューブ型を提案する。
ユーザのアクティビティシーケンス(例えば、購入とレート)をキャプチャすることで、ユーザの超立方体学習を容易にするニューラルネットワークも提案されている。
提案モデルの有効性を,パブリックデータセットと商用データセットの両方で広範な実験により実証する。
実験結果から,本手法は既存の最先端技術を上回る有望な結果が得られた。
関連論文リスト
- Retrieval Augmentation via User Interest Clustering [57.63883506013693]
インダストリアルレコメンデータシステムは、ユーザ・イテム・エンゲージメントのパターンに敏感である。
本稿では,ユーザの関心を効率的に構築し,計算コストの低減を図る新しい手法を提案する。
当社のアプローチはMetaの複数の製品に展開されており、ショートフォームビデオ関連の推奨を助長しています。
論文 参考訳(メタデータ) (2024-08-07T16:35:10Z) - DiffMM: Multi-Modal Diffusion Model for Recommendation [19.43775593283657]
DiffMMと呼ばれる新しいマルチモーダルグラフ拡散モデルを提案する。
本フレームワークは,モダリティを意識したグラフ拡散モデルとクロスモーダルコントラスト学習パラダイムを統合し,モダリティを意識したユーザ表現学習を改善する。
論文 参考訳(メタデータ) (2024-06-17T17:35:54Z) - Generalized User Representations for Transfer Learning [6.953653891411339]
本稿では,大規模レコメンデーションシステムにおけるユーザ表現のための新しいフレームワークを提案する。
提案手法は,表現学習と伝達学習を組み合わせた2段階の手法を用いる。
提案するフレームワークは,代替手法と比較して,インフラコストを大幅に削減できることを示す。
論文 参考訳(メタデータ) (2024-03-01T15:05:21Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
逐次レコメンデーションのためのマルチモーダル事前学習・転送学習フレームワークであるMISSRecを提案する。
ユーザ側ではトランスフォーマーベースのエンコーダデコーダモデルを設計し、コンテキストエンコーダがシーケンスレベルのマルチモーダルユーザ興味を捉えることを学習する。
候補項目側では,ユーザ適応項目表現を生成するために動的融合モジュールを採用する。
論文 参考訳(メタデータ) (2023-08-22T04:06:56Z) - A Model-Agnostic Framework for Recommendation via Interest-aware Item
Embeddings [4.989653738257287]
Interest-Aware Capsule Network (IaCN)は、関心指向のアイテム表現を直接学習するモデルに依存しないフレームワークである。
IaCNは補助的なタスクとして機能し、アイテムベースと興味ベースの両方の表現の合同学習を可能にする。
提案手法をベンチマークデータセットで評価し、異なるディープニューラルネットワークを含むさまざまなシナリオを探索する。
論文 参考訳(メタデータ) (2023-08-17T22:40:59Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
逐次リコメンデータモデルは、プラットフォーム上での氏のインタラクション履歴に基づいて、ユーザが次に対話する可能性のあるアイテムを予測することを学習する。
しかし、ほとんどのシーケンシャルなレコメンデータは、ユーザの意図に対する高いレベルの理解を欠いている。
したがって、インテントモデリングはユーザー理解と長期ユーザーエクスペリエンスの最適化に不可欠である。
論文 参考訳(メタデータ) (2022-11-17T19:00:24Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
論文 参考訳(メタデータ) (2022-09-12T09:19:22Z) - Self-Supervised Hypergraph Transformer for Recommender Systems [25.07482350586435]
自己監督型ハイパーグラフ変換器(SHT)
自己監督型ハイパーグラフ変換器(SHT)
ユーザ-テム相互作用グラフ上のデータ拡張のために,クロスビュー生成型自己教師型学習コンポーネントを提案する。
論文 参考訳(メタデータ) (2022-07-28T18:40:30Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - Modeling High-order Interactions across Multi-interests for Micro-video
Reommendation [65.16624625748068]
利用者の興味表現を高めるためのセルフオーバーCoアテンションモジュールを提案します。
特に、まず相関パターンを異なるレベルでモデル化し、次に自己注意を使って特定のレベルで相関パターンをモデル化します。
論文 参考訳(メタデータ) (2021-04-01T07:20:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。