論文の概要: Ordinal Graph Gamma Belief Network for Social Recommender Systems
- arxiv url: http://arxiv.org/abs/2209.05106v1
- Date: Mon, 12 Sep 2022 09:19:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-13 14:14:46.959566
- Title: Ordinal Graph Gamma Belief Network for Social Recommender Systems
- Title(参考訳): 社会推薦システムのための順序グラフガンマ信念ネットワーク
- Authors: Dongsheng Wang, Chaojie Wang, Bo Chen, Mingyuan Zhou
- Abstract要約: 我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
- 参考スコア(独自算出の注目度): 54.9487910312535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To build recommender systems that not only consider user-item interactions
represented as ordinal variables, but also exploit the social network
describing the relationships between the users, we develop a hierarchical
Bayesian model termed ordinal graph factor analysis (OGFA), which jointly
models user-item and user-user interactions. OGFA not only achieves good
recommendation performance, but also extracts interpretable latent factors
corresponding to representative user preferences. We further extend OGFA to
ordinal graph gamma belief network, which is a multi-stochastic-layer deep
probabilistic model that captures the user preferences and social communities
at multiple semantic levels. For efficient inference, we develop a parallel
hybrid Gibbs-EM algorithm, which exploits the sparsity of the graphs and is
scalable to large datasets. Our experimental results show that the proposed
models not only outperform recent baselines on recommendation datasets with
explicit or implicit feedback, but also provide interpretable latent
representations.
- Abstract(参考訳): 順序変数として表現されるユーザ-itemの相互作用だけでなく,ユーザ間の関係を記述したソーシャルネットワークを利用したリコメンデーションシステムを構築するために,ユーザ-itemとユーザ-ユーザインタラクションを共同でモデル化する階層型ベイズモデル(OGFA)を開発した。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はさらに、OGFAをオーディナルグラフガンマ信念ネットワークに拡張し、複数のセマンティックレベルでユーザの好みや社会的コミュニティをキャプチャするマルチ確率層深層確率モデルを提案する。
効率的な推論のために,グラフの幅を生かし,大規模データセットにスケーラブルな並列ハイブリッドGibs-EMアルゴリズムを開発した。
実験の結果,提案モデルは明示的あるいは暗黙的なフィードバックを伴うレコメンデーションデータセットのベースラインを上回っているだけでなく,解釈可能な潜在表現も提供できることがわかった。
関連論文リスト
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
解析条件後部を解析し,推論精度を向上させるグラフポアソン因子分析法(GPFA)を開発した。
また,GPFAを多層構造に拡張したグラフPoisson gamma belief Network (GPGBN) を用いて,階層的な文書関係を複数の意味レベルで捉える。
本モデルでは,高品質な階層型文書表現を抽出し,様々なグラフ解析タスクにおいて有望な性能を実現する。
論文 参考訳(メタデータ) (2024-10-13T02:22:14Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
グラフ畳み込みネットワーク(GCN)は、レコメンデーションシステムのためのユーザおよびアイテム表現の学習に成功している。
既存のGCNベースのほとんどのメソッドは、高階グラフ畳み込みを実行しながら、ユーザの複数の関心事を見落としている。
クラスタベースグラフ協調フィルタリング(ClusterGCF)と呼ばれる新しいGCNベースのレコメンデーションモデルを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:05:16Z) - Preference and Concurrence Aware Bayesian Graph Neural Networks for
Recommender Systems [5.465420718331109]
グラフベースのコラボレーティブフィルタリング手法はレコメンダシステムの性能向上に寄与した。
本稿では,ユーザの好みや項目の一致,重要なグラフ構造情報などを共同で検討する効率的な生成モデルを提案する。
論文 参考訳(メタデータ) (2023-11-30T11:49:33Z) - Neural Graph Collaborative Filtering Using Variational Inference [19.80976833118502]
本稿では,変分グラフオートエンコーダを用いて学習した表現を組み込む新しいフレームワークとして,変分埋め込み協調フィルタリング(GVECF)を導入する。
提案手法は,テストデータに対するリコールを最大13.78%改善する。
論文 参考訳(メタデータ) (2023-11-20T15:01:33Z) - Graph Neural Bandits [49.85090929163639]
グラフニューラルネットワーク(GNN)によって強化されたユーザ間の協調性を生かしたグラフニューラルバンド(GNB)というフレームワークを提案する。
提案手法を改良するために,推定ユーザグラフ上の別々のGNNモデルを用いて,エクスプロイトと適応探索を行う。
論文 参考訳(メタデータ) (2023-08-21T15:57:57Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Self-Supervised Hypergraph Transformer for Recommender Systems [25.07482350586435]
自己監督型ハイパーグラフ変換器(SHT)
自己監督型ハイパーグラフ変換器(SHT)
ユーザ-テム相互作用グラフ上のデータ拡張のために,クロスビュー生成型自己教師型学習コンポーネントを提案する。
論文 参考訳(メタデータ) (2022-07-28T18:40:30Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Multi-Behavior Enhanced Recommendation with Cross-Interaction
Collaborative Relation Modeling [42.6279077675585]
本稿では,グラフニューラルマルチビヘイビア拡張レコメンデーションフレームワークを提案する。
グラフベースのメッセージパッシングアーキテクチャの下で、異なるタイプのユーザ-テムインタラクション間の依存関係を明示的にモデル化します。
実世界のレコメンデーションデータセットの実験は、GNMRが最先端の手法を一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2022-01-07T03:12:37Z) - Hierarchical BiGraph Neural Network as Recommendation Systems [0.0]
本稿では,GNNをレコメンデーションシステムとして使用し,ビグラフフレームワークを用いてユーザイテム機能を構築する階層的アプローチを提案する。
実験の結果,現在の推薦システム手法と伝達性との競合性能が示された。
論文 参考訳(メタデータ) (2020-07-27T18:01:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。