End-To-End Semi-supervised Learning for Differentiable Particle Filters
- URL: http://arxiv.org/abs/2011.05748v2
- Date: Sun, 28 Mar 2021 14:15:04 GMT
- Title: End-To-End Semi-supervised Learning for Differentiable Particle Filters
- Authors: Hao Wen, Xiongjie Chen, Georgios Papagiannis, Conghui Hu and Yunpeng
Li
- Abstract summary: Recent advances in incorporating neural networks into particle filters provide the desired flexibility to apply particle filters in real-world applications.
Past efforts in optimising such models often require the knowledge of true states which can be expensive to obtain or even unavailable in practice.
We present an end-to-end learning objective based upon the maximisation of a pseudo-likelihood function which can improve the estimation of states when large portion of true states are unknown.
- Score: 15.187145925738553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in incorporating neural networks into particle filters
provide the desired flexibility to apply particle filters in large-scale
real-world applications. The dynamic and measurement models in this framework
are learnable through the differentiable implementation of particle filters.
Past efforts in optimising such models often require the knowledge of true
states which can be expensive to obtain or even unavailable in practice. In
this paper, in order to reduce the demand for annotated data, we present an
end-to-end learning objective based upon the maximisation of a
pseudo-likelihood function which can improve the estimation of states when
large portion of true states are unknown. We assess performance of the proposed
method in state estimation tasks in robotics with simulated and real-world
datasets.
Related papers
- Normalising Flow-based Differentiable Particle Filters [19.09640071505051]
We present a differentiable particle filtering framework that uses (conditional) normalising flows to build its dynamic model, proposal distribution, and measurement model.
We derive the theoretical properties of the proposed filters and evaluate the proposed normalising flow-based differentiable particle filters' performance through a series of numerical experiments.
arXiv Detail & Related papers (2024-03-03T12:23:17Z) - Learning Differentiable Particle Filter on the Fly [18.466658684464598]
Differentiable particle filters are an emerging class of sequential Bayesian inference techniques.
We propose an online learning framework for differentiable particle filters so that model parameters can be updated as data arrive.
arXiv Detail & Related papers (2023-12-10T17:54:40Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Differentiable Bootstrap Particle Filters for Regime-Switching Models [43.03865620039904]
In real-world applications, both the state dynamics and measurements can switch between a set of candidate models.
This paper proposes a new differentiable particle filter for regime-switching state-space models.
The method can learn a set of unknown candidate dynamic and measurement models and track the state posteriors.
arXiv Detail & Related papers (2023-02-20T21:14:27Z) - An overview of differentiable particle filters for data-adaptive
sequential Bayesian inference [19.09640071505051]
Particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems.
An emerging trend involves constructing components of particle filters using neural networks and optimising them by gradient descent.
Differentiable particle filters are a promising computational tool for performing inference on sequential data in complex, high-dimensional tasks.
arXiv Detail & Related papers (2023-02-19T18:03:53Z) - Particle-Based Score Estimation for State Space Model Learning in
Autonomous Driving [62.053071723903834]
Multi-object state estimation is a fundamental problem for robotic applications.
We consider learning maximum-likelihood parameters using particle methods.
We apply our method to real data collected from autonomous vehicles.
arXiv Detail & Related papers (2022-12-14T01:21:05Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Multitarget Tracking with Transformers [21.81266872964314]
Multitarget Tracking (MTT) is a problem of tracking the states of an unknown number of objects using noisy measurements.
In this paper, we propose a high-performing deep-learning method for MTT based on the Transformer architecture.
arXiv Detail & Related papers (2021-04-01T19:14:55Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.