Multitarget Tracking with Transformers
- URL: http://arxiv.org/abs/2104.00734v1
- Date: Thu, 1 Apr 2021 19:14:55 GMT
- Title: Multitarget Tracking with Transformers
- Authors: Juliano Pinto, Georg Hess, William Ljungbergh, Yuxuan Xia, Lennart
Svensson, Henk Wymeersch
- Abstract summary: Multitarget Tracking (MTT) is a problem of tracking the states of an unknown number of objects using noisy measurements.
In this paper, we propose a high-performing deep-learning method for MTT based on the Transformer architecture.
- Score: 21.81266872964314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multitarget Tracking (MTT) is the problem of tracking the states of an
unknown number of objects using noisy measurements, with important applications
to autonomous driving, surveillance, robotics, and others. In the model-based
Bayesian setting, there are conjugate priors that enable us to express the
multi-object posterior in closed form, which could theoretically provide
Bayes-optimal estimates. However, the posterior involves a super-exponential
growth of the number of hypotheses over time, forcing state-of-the-art methods
to resort to approximations for remaining tractable, which can impact their
performance in complex scenarios. Model-free methods based on deep-learning
provide an attractive alternative, as they can in principle learn the optimal
filter from data, but to the best of our knowledge were never compared to
current state-of-the-art Bayesian filters, specially not in contexts where
accurate models are available. In this paper, we propose a high-performing
deep-learning method for MTT based on the Transformer architecture and compare
it to two state-of-the-art Bayesian filters, in a setting where we assume the
correct model is provided. Although this gives an edge to the model-based
filters, it also allows us to generate unlimited training data. We show that
the proposed model outperforms state-of-the-art Bayesian filters in complex
scenarios, while macthing their performance in simpler cases, which validates
the applicability of deep-learning also in the model-based regime. The code for
all our implementations is made available at (github link to be provided).
Related papers
- MUSO: Achieving Exact Machine Unlearning in Over-Parameterized Regimes [19.664090734076712]
Machine unlearning (MU) makes a well-trained model behave as if it had never been trained on specific data.
We propose an alternating optimization algorithm that unifies the tasks of unlearning and relabeling.
The algorithm's effectiveness, confirmed through numerical experiments, highlights its superior performance in unlearning across various scenarios.
arXiv Detail & Related papers (2024-10-11T06:17:17Z) - Scalable Inference for Bayesian Multinomial Logistic-Normal Dynamic Linear Models [0.5735035463793009]
This article develops an efficient and accurate approach to posterior state estimation, called $textitFenrir$.
Our experiments suggest that Fenrir can be three orders of magnitude more efficient than Stan.
Our methods are made available to the community as a user-friendly software library written in C++ with an R interface.
arXiv Detail & Related papers (2024-10-07T23:20:14Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Learning Differentiable Particle Filter on the Fly [18.466658684464598]
Differentiable particle filters are an emerging class of sequential Bayesian inference techniques.
We propose an online learning framework for differentiable particle filters so that model parameters can be updated as data arrive.
arXiv Detail & Related papers (2023-12-10T17:54:40Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
Correlation based stereo matching has achieved outstanding performance.
Current methods with a fixed model do not work uniformly well across various datasets.
This paper proposes a new perspective to dynamically calculate correlation for robust stereo matching.
arXiv Detail & Related papers (2023-07-26T09:47:37Z) - Multidimensional Item Response Theory in the Style of Collaborative
Filtering [0.8057006406834467]
This paper presents a machine learning approach to multidimensional item response theory (MIRT)
Inspired by collaborative filtering, we define a general class of models that includes many MIRT models.
We discuss the use of penalized joint maximum likelihood (JML) to estimate individual models and cross-validation to select the best performing model.
arXiv Detail & Related papers (2023-01-03T00:56:27Z) - Can Deep Learning be Applied to Model-Based Multi-Object Tracking? [25.464269324261636]
Multi-object tracking (MOT) is the problem of tracking the state of an unknown and time-varying number of objects using noisy measurements.
Deep learning (DL) has been increasingly used in MOT for improving tracking performance.
In this paper, we propose a Transformer-based DL tracker and evaluate its performance in the model-based setting.
arXiv Detail & Related papers (2022-02-16T07:43:08Z) - Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative
Filtering [59.349057602266]
Variational AutoEncoder (VAE) has been extended as a representative nonlinear method for collaborative filtering.
We propose to decompose the inner-product-based softmax probability based on the inverted multi-index.
FastVAE can outperform the state-of-the-art baselines in terms of both sampling quality and efficiency.
arXiv Detail & Related papers (2021-09-13T08:31:59Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
Online algorithms are popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches.
When a constant step-size is used, these algorithms also have the ability to adapt to drifts in problem parameters, such as data or model properties, and track the optimal solution with reasonable accuracy.
We establish a link between steady-state performance derived under stationarity assumptions and the tracking performance of online learners under random walk models.
arXiv Detail & Related papers (2020-04-04T14:16:27Z) - Nonparametric Estimation in the Dynamic Bradley-Terry Model [69.70604365861121]
We develop a novel estimator that relies on kernel smoothing to pre-process the pairwise comparisons over time.
We derive time-varying oracle bounds for both the estimation error and the excess risk in the model-agnostic setting.
arXiv Detail & Related papers (2020-02-28T21:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.