論文の概要: Assessment of text coherence based on the cohesion estimation
- arxiv url: http://arxiv.org/abs/2011.05788v1
- Date: Wed, 11 Nov 2020 14:05:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 00:08:30.038234
- Title: Assessment of text coherence based on the cohesion estimation
- Title(参考訳): 凝集度推定に基づくテキストコヒーレンスの評価
- Authors: S.D. Pogorilyy, A.A. Kramov
- Abstract要約: 本手法は,評価プロセスの理解をユーザに提供するために,グラフベースのアプローチを用いる。
異なる言語に適用できるため、英語、中国語、アラビア文字のセットで本手法の有効性を検討することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a graph-based coherence estimation method based on the
cohesion estimation is suggested. Our method uses a graph-based approach to
provide a user with an understanding of the evaluation process. Moreover, it
can be applied to different languages, therefore, the effectiveness of this
method is examined on the set of English, Chinese, and Arabic texts.
- Abstract(参考訳): 本稿では,凝集度推定に基づくグラフベースのコヒーレンス推定手法を提案する。
本手法は,評価プロセスの理解をユーザに提供するために,グラフベースのアプローチを用いる。
また、異なる言語にも適用できるため、英語、中国語、アラビア語のテキストのセットにおいて、この方法の有効性について検討する。
関連論文リスト
- Backdoor-based Explainable AI Benchmark for High Fidelity Evaluation of Attribution Methods [49.62131719441252]
属性法は入力特徴の重要度を計算し、深層モデルの出力予測を説明する。
本研究はまず,属性手法の信頼性ベンチマークが満たすであろう信頼度基準の集合を同定する。
次に、望ましい忠実度基準に準拠したBackdoorベースのeXplainable AIベンチマーク(BackX)を紹介します。
論文 参考訳(メタデータ) (2024-05-02T13:48:37Z) - Language Model Decoding as Direct Metrics Optimization [87.68281625776282]
現在の復号法は、異なる側面にわたる人間のテキストと整合するテキストを生成するのに苦労している。
本研究では,言語モデルからの復号化を最適化問題として,期待される性能と人間のテキストとの厳密なマッチングを目的とした。
この誘導分布は,人間のテキストの難易度を向上させることが保証されていることを証明し,人間のテキストの基本的な分布に対するより良い近似を示唆する。
論文 参考訳(メタデータ) (2023-10-02T09:35:27Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - KNNs of Semantic Encodings for Rating Prediction [9.099316505624726]
本稿では,テキストのセマンティックな類似性を,評価予測のためのユーザ参照表現に応用することを提案する。
このアプローチは、エッジが意味的類似性によって定義されるレビューテキストからのテキストスニペットのグラフとして、ユーザの好みを表す。
この手法は定量的に評価され、この方法でテキストを活用することは、強いメモリベースとモデルベースの協調フィルタリングベースラインの両方より優れていることを強調した。
論文 参考訳(メタデータ) (2023-02-01T12:53:31Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
また,いくつかの属性法の性能を著しく向上する処理後平滑化ステップを提案する。
論文 参考訳(メタデータ) (2022-05-20T20:50:17Z) - A Multilingual Perspective Towards the Evaluation of Attribution Methods
in Natural Language Inference [28.949004915740776]
本稿では,自然言語推論(NLI)タスクに対する帰属的手法を評価するための多言語的手法を提案する。
まず,単語アライメントに基づいて忠実度を測定するための新たな言語間戦略を導入する。
次に、異なる出力機構と集約手法を考慮し、帰属手法の包括的な評価を行う。
論文 参考訳(メタデータ) (2022-04-11T22:11:05Z) - Phonetic Word Embeddings [1.2192936362342826]
本稿では,人間の音知覚からモチベーションを受ける単語間の音声的類似性を計算するための新しい手法を提案する。
この計量は、類似の発声語をまとめる連続ベクトル埋め込み空間を学ぶために用いられる。
本手法の有効性を2つの異なる言語(ヒンディー語、ヒンディー語)で示し、過去の報告よりも高い性能を示した。
論文 参考訳(メタデータ) (2021-09-30T01:46:01Z) - Method of the coherence evaluation of Ukrainian text [0.0]
ウクライナ語のテキストコヒーレンス測定法について分析した。
訓練と試験はウクライナのテキストのコーパスで行われている。
テキストコヒーレンス評価のための2つの典型的なタスクを実行することで、テスト手順を実行する。
論文 参考訳(メタデータ) (2020-10-31T16:48:55Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
本研究は,テキスト分析における主観性と一般的文脈依存性を考慮した新しい手法を提案する。
単語間の類似度を用いて、ベンチマーク中の要素の相対的関連性を抽出することができる。
この方法は、主観的評価がテキストの相対値や意味を理解するために関係しているすべてのケースに適用できる。
論文 参考訳(メタデータ) (2020-05-12T21:26:04Z) - Evaluating text coherence based on the graph of the consistency of
phrases to identify symptoms of schizophrenia [0.0]
テキストコヒーレンス推定に基づく統合失調症症状検出の最先端手法について検討した。
文のセマンティック・コヒーレンスと凝集度を評価するために,句の一貫性のグラフに基づく手法が提案されている。
論文 参考訳(メタデータ) (2020-05-06T08:38:20Z) - Adaptive Estimator Selection for Off-Policy Evaluation [48.66170976187225]
オフポリシー評価設定における推定器選択のための汎用的データ駆動手法を開発した。
また,本手法の性能保証を確立し,オラクル推定器と競合することを示す。
論文 参考訳(メタデータ) (2020-02-18T16:57:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。