Long-lived non-thermal states in pumped one-dimensional systems of
hard-core bosons
- URL: http://arxiv.org/abs/2011.05849v2
- Date: Thu, 8 Jul 2021 16:34:46 GMT
- Title: Long-lived non-thermal states in pumped one-dimensional systems of
hard-core bosons
- Authors: Patrycja {\L}yd\.zba and Janez Bon\v{c}a
- Abstract summary: We study a unitary time evolution of a symmetry-broken state in a form of a charge density wave in a finite system of bosons.
We introduce a spatially-homogenous and time-dependent vector potential that mimics a short laser pulse.
We propose a protocol that reveals non-thermal long-lived states, which are characterized by a non-zero charge density wave order.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a unitary time evolution of a symmetry-broken state in a form of a
charge density wave in a finite system of interacting hard-core bosons, which
can be mapped onto the XXZ Heisenberg chain. Moreover, we introduce a
spatially-homogenous and time-dependent vector potential that mimics a short
laser pulse. We establish the range of amplitudes of the vector potential for
which the onset of charge density wave order can be controlled. We propose a
protocol that reveals non-thermal long-lived states, which are characterized by
a non-zero charge density wave order translated by one lattice site with
respect to its initial formation. The life times of these states are large in
comparison to all typical times given by the parameters of the system. They
increase with the number of lattice sites, but are significantly suppressed by
the integrablility breaking perturbations. In view of these findings, we
speculate that the long-lived non-thermal states exist in the thermodynamic
limit.
Related papers
- Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Exact time-evolving scattering states in open quantum-dot systems with an interaction: Discovery of time-evolving resonant states [0.0]
We study exact time-evolving many-electron states of an open double quantum-dot system with an interdot Coulomb interaction.<n>For any initial states of localized electrons on the quantum dots, we find exact time-evolving states of a new type, which we refer to as time-evolving resonant states.
arXiv Detail & Related papers (2024-03-15T12:39:50Z) - Non-thermal eigenstates and slow relaxation in quantum Fredkin spin chains [0.0]
We study the dynamics and thermalization of the Fredkin spin chain, a system with local three-body interactions.
We consider deformations away from its point in order to tune between regimes where kinetic energy dominates those where potential energy does.
arXiv Detail & Related papers (2024-03-06T19:00:16Z) - Prethermalization in an open quantum system coupled to a spatially
correlated Bosonic bath [0.0]
A nearly-integrable isolated quantum many-body system reaches a quasi-stationary prethermal state before a late thermalization.
We study the properties of the emerging prethermal state for this case.
We discuss how such prethermal states can have significant applications in quantum entanglement storage devices.
arXiv Detail & Related papers (2024-01-06T18:13:41Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Prethermalization in one-dimensional quantum many-body systems with
confinement [0.0]
Unconventional nonequilibrium phases with restricted correlation spreading and slow entanglement growth have been proposed to emerge in systems with confined excitations.
Here, we show that in confined systems the thermalization dynamics after a quantum quench instead exhibits multiple stages with well separated time scales.
The discussed prethermalization dynamics is directly relevant to generic one-dimensional, many-body systems with confined excitations
arXiv Detail & Related papers (2022-02-25T19:01:02Z) - Driven anti-Bragg subradiant states in waveguide quantum electrodynamics [91.3755431537592]
We study theoretically driven quantum dynamics in periodic arrays of two-level qubits coupled to the waveguide.
We demonstrate, that strongly subradiant eigenstates of the master equation for the density matrix emerge under strong coherent driving for arrays with the anti-Bragg periods.
arXiv Detail & Related papers (2022-02-21T11:36:55Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Prolonged orbital relaxation by locally modified phonon density of
states for SiV$^-$ center in nanodiamonds [45.82374977939355]
Coherent quantum systems are a key resource for emerging quantum technology.
A novel method is presented to prolong the orbital relaxation with a locally modified phonon density of states.
arXiv Detail & Related papers (2021-07-30T14:14:26Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Dynamics of the vacuum state in a periodically driven Rydberg chain [0.0]
We study the dynamics of the periodically driven Rydberg chain starting from the state with zero Rydberg excitations.
We show that the Floquet Hamiltonian of the system, within a range of drive frequencies, hosts a set of quantum scars.
arXiv Detail & Related papers (2020-05-15T18:00:03Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.