Dynamical freezing in the thermodynamic limit: the strongly driven ensemble
- URL: http://arxiv.org/abs/2410.11050v1
- Date: Mon, 14 Oct 2024 19:57:43 GMT
- Title: Dynamical freezing in the thermodynamic limit: the strongly driven ensemble
- Authors: Asmi Haldar, Anirban Das, Sagnik Chaudhuri, Luke Staszewski, Alexander Wietek, Frank Pollmann, Roderich Moessner, Arnab Das,
- Abstract summary: A periodically driven (Floquet) system in the absence of any conservation law heats to a featureless infinite temperature' state.
Here, we find--for a clean and interacting generic spin chain--that this can be prevented by the emergence of it approximate but stable conservation-laws not present in the undriven system.
We show numerically, it in the thermodynamic limit,' that when required by these emergent conservation-laws, the entanglement-entropy density of an infinite subsystem remains zero.
- Score: 37.31317754926534
- License:
- Abstract: The ergodicity postulate, a foundational pillar of Gibbsian statistical mechanics predicts that a periodically driven (Floquet) system in the absence of any conservation law heats to a featureless `infinite temperature' state. Here, we find--for a clean and interacting generic spin chain subject to a {\it strong} driving field--that this can be prevented by the emergence of {\it approximate but stable} conservation-laws not present in the undriven system. We identify their origin: they do not necessarily owe their stability to familiar protections by symmetry, topology, disorder, or even high energy costs. We show numerically, {\it in the thermodynamic limit,} that when required by these emergent conservation-laws, the entanglement-entropy density of an infinite subsystem remains zero over our entire simulation time of several decades in natural units. We further provide a recipe for designing such conservation laws with high accuracy. Finally, we present an ensemble description, which we call the strongly driven ensemble incorporating these constraints. This provides a way to control many-body chaos through stable Floquet-engineering. Strong signatures of these conservation-laws should be experimentally accessible since they manifest in all length and time scales. Variants of the spin model we have used, have already been realized using Rydberg-dressed atoms.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Dynamics of Pseudoentanglement [0.03320194947871346]
dynamics of quantum entanglement plays a central role in explaining the emergence of thermal equilibrium in isolated many-body systems.
Recent works have introduced a notion of pseudoentanglement describing ensembles of many-body states.
This prompts the question: how much entanglement is truly necessary to achieve thermal equilibrium in quantum systems?
arXiv Detail & Related papers (2024-03-14T17:54:27Z) - Dissipative preparation of a Floquet topological insulator in an optical lattice via bath engineering [44.99833362998488]
Floquet engineering is an important tool for realizing charge-neutral atoms in optical lattices.
We show that a driven-dissipative system approximates a topological insulator.
arXiv Detail & Related papers (2023-07-07T17:47:50Z) - Reviving product states in the disordered Heisenberg chain [0.0]
A generic quantum system is typically equilibrates toward a state that can be described by a thermal ensemble.
Localized systems are non-ergodic and do not thermalize, however local observables are still believed to become stationary.
Here we demonstrate that this general picture is incomplete by constructing product states which feature periodic high-fidelity revivals of the full wavefunction.
arXiv Detail & Related papers (2022-10-06T18:25:43Z) - Ergodicity breaking provably robust to arbitrary perturbations [0.5735035463793008]
We present a new route to ergodicity breaking via Hilbert space fragmentation that displays an unprecedented level of robustness.
In particular, our proof is not limited to symmetric perturbations, or to perturbations with long-range tails, or even to arbitrary geometrically nonlocal $k$-body perturbations.
arXiv Detail & Related papers (2022-09-08T18:00:00Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Statistical Mechanics of Floquet Quantum Matter: Exact and Emergent
Conservation Laws [0.0]
More recently, it has been shown that the statistical mechanics has a much richer structure due to the existence of it emergent conservation laws.
This review intends to give a theoretical overview of these developments.
arXiv Detail & Related papers (2021-05-21T16:50:49Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum systems correlated with a finite bath: nonequilibrium dynamics
and thermodynamics [0.0]
We derive a master equation that accounts for system-bath correlations and includes, at a coarse-grained level, a dynamically evolving bath.
Our work paves the way for studying a variety of nanoscale quantum technologies including engines, refrigerators, or heat pumps.
arXiv Detail & Related papers (2020-08-05T15:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.