Transferred Fusion Learning using Skipped Networks
- URL: http://arxiv.org/abs/2011.05895v1
- Date: Wed, 11 Nov 2020 16:41:55 GMT
- Title: Transferred Fusion Learning using Skipped Networks
- Authors: Vinayaka R Kamath, Vishal S, Varun M
- Abstract summary: Transfer learning and zero shot learning help to reuse the existing models or augment the existing model to achieve improved performance at the task of object recognition.
We propose a novel mechanism to amplify the process of transfer learning by introducing a student architecture where the networks learn from each other.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Identification of an entity that is of interest is prominent in any
intelligent system. The visual intelligence of the model is enhanced when the
capability of recognition is added. Several methods such as transfer learning
and zero shot learning help to reuse the existing models or augment the
existing model to achieve improved performance at the task of object
recognition. Transferred fusion learning is one such mechanism that intends to
use the best of both worlds and build a model that is capable of outperforming
the models involved in the system. We propose a novel mechanism to amplify the
process of transfer learning by introducing a student architecture where the
networks learn from each other.
Related papers
- MergeNet: Knowledge Migration across Heterogeneous Models, Tasks, and Modalities [72.68829963458408]
We present MergeNet, which learns to bridge the gap of parameter spaces of heterogeneous models.
The core mechanism of MergeNet lies in the parameter adapter, which operates by querying the source model's low-rank parameters.
MergeNet is learned alongside both models, allowing our framework to dynamically transfer and adapt knowledge relevant to the current stage.
arXiv Detail & Related papers (2024-04-20T08:34:39Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism.
We have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge.
arXiv Detail & Related papers (2024-03-27T05:10:38Z) - Distilling Knowledge from CNN-Transformer Models for Enhanced Human
Action Recognition [1.8722948221596285]
The research aims to enhance the performance and efficiency of smaller student models by transferring knowledge from larger teacher models.
The proposed method employs a Transformer vision network as the student model, while a convolutional network serves as the teacher model.
The Vision Transformer (ViT) architecture is introduced as a robust framework for capturing global dependencies in images.
arXiv Detail & Related papers (2023-11-02T14:57:58Z) - Mechanism of feature learning in deep fully connected networks and
kernel machines that recursively learn features [15.29093374895364]
We identify and characterize the mechanism through which deep fully connected neural networks learn gradient features.
Our ansatz sheds light on various deep learning phenomena including emergence of spurious features and simplicity biases.
To demonstrate the effectiveness of this feature learning mechanism, we use it to enable feature learning in classical, non-feature learning models.
arXiv Detail & Related papers (2022-12-28T15:50:58Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Model LEGO: Creating Models Like Disassembling and Assembling Building Blocks [53.09649785009528]
In this paper, we explore a paradigm that does not require training to obtain new models.
Similar to the birth of CNN inspired by receptive fields in the biological visual system, we propose Model Disassembling and Assembling.
For model assembling, we present the alignment padding strategy and parameter scaling strategy to construct a new model tailored for a specific task.
arXiv Detail & Related papers (2022-03-25T05:27:28Z) - Learning Rich Nearest Neighbor Representations from Self-supervised
Ensembles [60.97922557957857]
We provide a framework to perform self-supervised model ensembling via a novel method of learning representations directly through gradient descent at inference time.
This technique improves representation quality, as measured by k-nearest neighbors, both on the in-domain dataset and in the transfer setting.
arXiv Detail & Related papers (2021-10-19T22:24:57Z) - Brain-inspired global-local learning incorporated with neuromorphic
computing [35.70151531581922]
We report a neuromorphic hybrid learning model by introducing a brain-inspired meta-learning paradigm and a differentiable spiking model incorporating neuronal dynamics and synaptic plasticity.
We demonstrate the advantages of this model in multiple different tasks, including few-shot learning, continual learning, and fault-tolerance learning in neuromorphic vision sensors.
arXiv Detail & Related papers (2020-06-05T04:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.