Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach
- URL: http://arxiv.org/abs/2403.18258v1
- Date: Wed, 27 Mar 2024 05:10:38 GMT
- Title: Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach
- Authors: Taro Togo, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama,
- Abstract summary: This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism.
We have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge.
- Score: 50.36650300087987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism, aimed at dynamically managing class information for better adaptation to streaming data. GCIL is one of the hot topics in the field of computer vision, and this is considered one of the crucial tasks in society, specifically the continual learning of generative models. The ability to forget is a crucial brain function that facilitates continual learning by selectively discarding less relevant information for humans. However, in the field of machine learning models, the concept of intentionally forgetting has not been extensively investigated. In this study we aim to bridge this gap by incorporating the forgetting mechanisms into GCIL, thereby examining their impact on the models' ability to learn in continual learning. Through our experiments, we have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge, underscoring the positive role that strategic forgetting plays in the process of continual learning.
Related papers
- "Forgetting" in Machine Learning and Beyond: A Survey [0.0]
This survey focuses on the benefits of forgetting and its applications across various machine learning sub-fields.
The paper discusses current challenges, future directions, and ethical considerations regarding the integration of forgetting mechanisms into machine learning models.
arXiv Detail & Related papers (2024-05-31T05:10:30Z) - Machine Unlearning in Contrastive Learning [3.6218162133579694]
We introduce a novel gradient constraint-based approach for training the model to effectively achieve machine unlearning.
Our approach demonstrates proficient performance not only on contrastive learning models but also on supervised learning models.
arXiv Detail & Related papers (2024-05-12T16:09:01Z) - Knowledge Distillation for Road Detection based on cross-model Semi-Supervised Learning [17.690698736544626]
We propose an integrated approach that combines knowledge distillation and semi-supervised learning methods.
This hybrid approach leverages the robust capabilities of large models to effectively utilise large unlabelled data.
The proposed semi-supervised learning-based knowledge distillation (SSLKD) approach demonstrates a notable improvement in the performance of the student model.
arXiv Detail & Related papers (2024-02-07T22:50:47Z) - Mechanism of feature learning in deep fully connected networks and
kernel machines that recursively learn features [15.29093374895364]
We identify and characterize the mechanism through which deep fully connected neural networks learn gradient features.
Our ansatz sheds light on various deep learning phenomena including emergence of spurious features and simplicity biases.
To demonstrate the effectiveness of this feature learning mechanism, we use it to enable feature learning in classical, non-feature learning models.
arXiv Detail & Related papers (2022-12-28T15:50:58Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Transferred Fusion Learning using Skipped Networks [0.0]
Transfer learning and zero shot learning help to reuse the existing models or augment the existing model to achieve improved performance at the task of object recognition.
We propose a novel mechanism to amplify the process of transfer learning by introducing a student architecture where the networks learn from each other.
arXiv Detail & Related papers (2020-11-11T16:41:55Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Few-Shot Class-Incremental Learning [68.75462849428196]
We focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem.
FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones.
We represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes.
arXiv Detail & Related papers (2020-04-23T03:38:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.