論文の概要: The Impact of Text Presentation on Translator Performance
- arxiv url: http://arxiv.org/abs/2011.05978v1
- Date: Wed, 11 Nov 2020 18:50:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 00:25:11.084729
- Title: The Impact of Text Presentation on Translator Performance
- Title(参考訳): テキスト提示が翻訳者性能に及ぼす影響
- Authors: Samuel L\"aubli, Patrick Simianer, Joern Wuebker, Geza Kovacs, Rico
Sennrich, Spence Green
- Abstract要約: コンピュータ支援翻訳(CAT)ツールは文書を文などのセグメントに分割し、それらを横に並べてスプレッドシートのようなビューに配置する。
本稿では,3つの実験テキスト処理タスクにおいて,これらの設計選択をトランスレータの性能,速度,精度で制御した最初の評価を行う。
- 参考スコア(独自算出の注目度): 31.229351784527278
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Widely used computer-aided translation (CAT) tools divide documents into
segments such as sentences and arrange them in a side-by-side, spreadsheet-like
view. We present the first controlled evaluation of these design choices on
translator performance, measuring speed and accuracy in three experimental text
processing tasks. We find significant evidence that sentence-by-sentence
presentation enables faster text reproduction and within-sentence error
identification compared to unsegmented text, and that a top-and-bottom
arrangement of source and target sentences enables faster text reproduction
compared to a side-by-side arrangement. For revision, on the other hand, our
results suggest that presenting unsegmented text results in the highest
accuracy and time efficiency. Our findings have direct implications for best
practices in designing CAT tools.
- Abstract(参考訳): 広く使われているコンピュータ支援翻訳(cat)ツールは、文書を文のようなセグメントに分割し、スプレッドシートのように並べる。
本稿では, 3つの実験テキスト処理タスクにおいて, トランスレータの性能, 速度, 精度に関する設計選択を初めて制御的に評価する。
提案手法では,文単位の提示により,テキストの再現性が向上し,文内エラーの同定が容易になることを示すとともに,ソースと対象文の上下配置によって,並べ合わせよりも高速にテキストの再現が可能となることを示す。
一方, 再検討の結果, 未分類テキストの提示は, 高い精度と時間効率をもたらすことが示唆された。
この結果は,CATツールの設計におけるベストプラクティスに直接影響している。
関連論文リスト
- EAFormer: Scene Text Segmentation with Edge-Aware Transformers [56.15069996649572]
シーンテキストセグメンテーションは、通常、生成モデルがテキストの編集や削除を支援するために使用されるシーンイメージからテキストを抽出することを目的としている。
本稿では,特にテキストのエッジにおいて,テキストをより正確にセグメント化するためのエッジ対応変換器EAFormerを提案する。
論文 参考訳(メタデータ) (2024-07-24T06:00:33Z) - Improving Sampling Methods for Fine-tuning SentenceBERT in Text Streams [49.3179290313959]
本研究では,選択的な微調整言語モデルの設計した7つのテキストサンプリング手法の有効性について検討した。
これらの手法がSBERTモデルの微調整に与える影響を, 4つの異なる損失関数を用いて正確に評価する。
その結果,テキストストリームの分類にはソフトマックスの損失とバッチ・オール・トリプレットの損失が特に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-03-18T23:41:52Z) - Predicting Text Preference Via Structured Comparative Reasoning [110.49560164568791]
我々は、構造化中間比較を生成することによって、テキストの嗜好を予測するプロンプト方式であるSCを導入する。
我々は、テキスト間の差異を明確に区別するためのペアワイズ整合コンパレータと一貫した比較を選択する。
要約,検索,自動評価など多種多様なNLPタスクに対する総合的な評価は,SCがテキスト優先予測における最先端性能を達成するためにLLMを装備していることを示す。
論文 参考訳(メタデータ) (2023-11-14T18:51:38Z) - Composition-contrastive Learning for Sentence Embeddings [23.85590618900386]
この作業は、補助的なトレーニング目標や追加のネットワークパラメータのコストを発生させることなく、初めて実施される。
意味的テキスト類似性タスクの実験結果は、最先端のアプローチに匹敵するベースラインの改善を示す。
論文 参考訳(メタデータ) (2023-07-14T14:39:35Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - Weakly-Supervised Text Instance Segmentation [44.20745377169349]
テキスト認識とテキストセグメンテーションをブリッジすることで、弱教師付きテキストインスタンスセグメンテーションを初めて実施する。
提案手法は, ICDAR13-FST(18.95$%$改善)ベンチマークとTextSeg (17.80$%$改善)ベンチマークにおいて, 弱教師付きインスタンスセグメンテーション法を著しく上回っている。
論文 参考訳(メタデータ) (2023-03-20T03:56:47Z) - Toward Unifying Text Segmentation and Long Document Summarization [31.084738269628748]
文章・音声文書の抽出要約において,部分分割が果たす役割について検討する。
本手法は,要約とセグメンテーションを同時に行うことによって,頑健な文表現を学習する。
以上の結果から,本モデルは,公開ベンチマーク上での最先端性能を達成できるだけでなく,異種間転送性も向上できることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T22:07:10Z) - Text Revision by On-the-Fly Representation Optimization [76.11035270753757]
現在の最先端手法は、これらのタスクをシーケンスからシーケンスまでの学習問題として定式化している。
並列データを必要としないテキストリビジョンのための反復的なインプレース編集手法を提案する。
テキストの単純化に関する最先端の教師付き手法よりも、競争力があり、パフォーマンスも向上する。
論文 参考訳(メタデータ) (2022-04-15T07:38:08Z) - Topical Change Detection in Documents via Embeddings of Long Sequences [4.13878392637062]
テキストセグメンテーションのタスクを独立した教師付き予測タスクとして定式化する。
類似セクションの段落を微調整することで、学習した特徴がトピック情報をエンコードすることを示すことができます。
文レベルで操作する従来のアプローチとは異なり、我々は常により広いコンテキストを使用します。
論文 参考訳(メタデータ) (2020-12-07T12:09:37Z) - Text Perceptron: Towards End-to-End Arbitrary-Shaped Text Spotting [49.768327669098674]
テキストパーセプトロン(Text Perceptron)という,エンドツーエンドのトレーニング可能なテキストスポッティング手法を提案する。
まず、テキスト読解順序と境界情報を学ぶ効率的なセグメンテーションベースのテキスト検出器を用いる。
次に、検出された特徴領域を正規形態に変換するために、新しい形状変換モジュール(STM)を設計する。
論文 参考訳(メタデータ) (2020-02-17T08:07:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。