論文の概要: Augmenting BERT Carefully with Underrepresented Linguistic Features
- arxiv url: http://arxiv.org/abs/2011.06153v1
- Date: Thu, 12 Nov 2020 01:32:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 06:23:14.395719
- Title: Augmenting BERT Carefully with Underrepresented Linguistic Features
- Title(参考訳): 言語学的特徴に乏しいBERTの拡張
- Authors: Aparna Balagopalan, Jekaterina Novikova
- Abstract要約: 変換器 (BERT) を用いた配列分類モデルにより, 人間の音声の転写からアルツハイマー病 (AD) を検出するのに有効であることが証明された。
従来の研究では、追加情報でモデルを増強することで、様々なタスクにおけるBERTのパフォーマンスを改善することが可能であった。
これらの特徴と組み合わせて調整したBERTは,細調整したBERT単独に比べて,AD分類の性能を最大5%向上させることを示した。
- 参考スコア(独自算出の注目度): 6.096779295981379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuned Bidirectional Encoder Representations from Transformers
(BERT)-based sequence classification models have proven to be effective for
detecting Alzheimer's Disease (AD) from transcripts of human speech. However,
previous research shows it is possible to improve BERT's performance on various
tasks by augmenting the model with additional information. In this work, we use
probing tasks as introspection techniques to identify linguistic information
not well-represented in various layers of BERT, but important for the AD
detection task. We supplement these linguistic features in which
representations from BERT are found to be insufficient with hand-crafted
features externally, and show that jointly fine-tuning BERT in combination with
these features improves the performance of AD classification by upto 5\% over
fine-tuned BERT alone.
- Abstract(参考訳): 変換器(BERT)をベースとした配列分類モデルを用いた微調整双方向エンコーダ表現は,ヒト音声の転写からアルツハイマー病(AD)を検出するのに有効であることが証明されている。
しかし、従来の研究では、追加情報でモデルを増強することで、様々なタスクにおけるBERTの性能を改善することが可能であった。
本研究では,探索課題をイントロスペクション手法として用いて,BERTの様々な層で表現されていない言語情報を識別するが,AD検出タスクでは重要である。
これらの言語的特徴は,手作りの特徴が不十分であることが判明し,これらの特徴と組み合わせることで,細調整されたBERTのみよりも最大5倍のAD分類性能が向上することを示す。
関連論文リスト
- Make BERT-based Chinese Spelling Check Model Enhanced by Layerwise
Attention and Gaussian Mixture Model [33.446533426654995]
我々は、BERTベースのCSCモデルを強化するために、異種知識注入フレームワークを設計する。
複数層表現を生成するために,n-gram-based layerwise self-attention の新たな形式を提案する。
実験の結果,提案手法は4つの強力なベースラインモデルに対して安定な性能向上をもたらすことがわかった。
論文 参考訳(メタデータ) (2023-12-27T16:11:07Z) - Prefer to Classify: Improving Text Classifiers via Auxiliary Preference
Learning [76.43827771613127]
本稿では、このような補助データアノテーションの新しい代替手段として、入力テキストのペア間のタスク固有の嗜好について検討する。
本稿では、与えられた分類課題と補助的選好の両方を学ぶことの協調効果を享受できる、P2Cと呼ばれる新しいマルチタスク学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-08T04:04:47Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Can BERT Refrain from Forgetting on Sequential Tasks? A Probing Study [68.75670223005716]
BERTのような事前学習型言語モデルでは,メモリリプレイが少なくても,逐次学習が可能であることが判明した。
実験の結果,BERT は従来学習したタスクに対して,極めて疎らなリプレイや,さらにはリプレイを行なわずに,長期間にわたって高品質な表現を生成できることが判明した。
論文 参考訳(メタデータ) (2023-03-02T09:03:43Z) - Explaining and Improving BERT Performance on Lexical Semantic Change
Detection [22.934650688233734]
SemEval-2020 Task 1における型ベースモデルの最近の成功は、トークンベースモデルの成功がなぜ我々の分野に反映しないのかという疑問を提起している。
BERTベクトルのクラスタリングに対する変数の範囲の影響を調査し、その低パフォーマンスがターゲット語の正則情報によるものであることを示した。
論文 参考訳(メタデータ) (2021-03-12T13:29:30Z) - An Interpretable End-to-end Fine-tuning Approach for Long Clinical Text [72.62848911347466]
EHRにおける非構造化臨床テキストには、意思決定支援、トライアルマッチング、振り返り研究を含むアプリケーションにとって重要な情報が含まれている。
最近の研究は、これらのモデルが他のNLPドメインにおける最先端の性能を考慮し、BERTベースのモデルを臨床情報抽出およびテキスト分類に応用している。
本稿では,SnipBERTという新しい微調整手法を提案する。SnipBERTは全音符を使用する代わりに,重要なスニペットを識別し,階層的に切り刻まれたBERTベースのモデルに供給する。
論文 参考訳(メタデータ) (2020-11-12T17:14:32Z) - GiBERT: Introducing Linguistic Knowledge into BERT through a Lightweight
Gated Injection Method [29.352569563032056]
本稿では,言語知識を単語埋め込みの形で,事前学習したBERTに明示的に注入する手法を提案する。
依存性ベースと逆適合の埋め込みを注入する場合、複数のセマンティックな類似性データセットのパフォーマンス改善は、そのような情報が有益であり、現在元のモデルから欠落していることを示している。
論文 参考訳(メタデータ) (2020-10-23T17:00:26Z) - A Study of Cross-Lingual Ability and Language-specific Information in
Multilingual BERT [60.9051207862378]
Multilingual BERTは、言語間転送タスクで驚くほどうまく機能します。
データサイズとコンテキストウィンドウサイズは、転送可能性にとって重要な要素です。
多言語BERTの言語間能力を改善するために、計算的に安価だが効果的なアプローチがある。
論文 参考訳(メタデータ) (2020-04-20T11:13:16Z) - What BERT Sees: Cross-Modal Transfer for Visual Question Generation [21.640299110619384]
補足データを用いた事前学習を回避して,BERTのアウト・オブ・ザ・ボックスの視覚能力について検討した。
テキスト生成のためのBERTベースのアーキテクチャであるBERT-genを導入する。
論文 参考訳(メタデータ) (2020-02-25T12:44:36Z) - Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation [84.64004917951547]
BERTのような微調整済みの言語モデルは、NLPにおいて効果的な方法となっている。
本稿では, BERTの微細調整を, 自己組織化と自己蒸留の2つの効果的なメカニズムで改善する。
論文 参考訳(メタデータ) (2020-02-24T16:17:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。