論文の概要: Optimizing Large-Scale Fleet Management on a Road Network using
Multi-Agent Deep Reinforcement Learning with Graph Neural Network
- arxiv url: http://arxiv.org/abs/2011.06175v2
- Date: Fri, 6 Aug 2021 02:34:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 08:02:28.768813
- Title: Optimizing Large-Scale Fleet Management on a Road Network using
Multi-Agent Deep Reinforcement Learning with Graph Neural Network
- Title(参考訳): グラフニューラルネットワークを用いた多エージェント深部強化学習による道路網上の大規模艦隊管理の最適化
- Authors: Juhyeon Kim, Kihyun Kim
- Abstract要約: 本稿では,マルチエージェント強化学習とグラフニューラルネットワークを組み合わせることで,艦隊管理を最適化する新しい手法を提案する。
本研究では,実証タクシー呼出データをエミュレートした現実的なシミュレータを設計し,提案モデルの有効性を種々の条件で検証する。
- 参考スコア(独自算出の注目度): 0.8702432681310401
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a novel approach to optimize fleet management by combining
multi-agent reinforcement learning with graph neural network. To provide
ride-hailing service, one needs to optimize dynamic resources and demands over
spatial domain. While the spatial structure was previously approximated with a
regular grid, our approach represents the road network with a graph, which
better reflects the underlying geometric structure. Dynamic resource allocation
is formulated as multi-agent reinforcement learning, whose action-value
function (Q function) is approximated with graph neural networks. We use
stochastic policy update rule over the graph with deep Q-networks (DQN), and
achieve superior results over the greedy policy update. We design a realistic
simulator that emulates the empirical taxi call data, and confirm the
effectiveness of the proposed model under various conditions.
- Abstract(参考訳): 本稿では,マルチエージェント強化学習とグラフニューラルネットワークを組み合わせることで,艦隊管理を最適化する手法を提案する。
配車サービスを実現するには、動的リソースと空間領域に対する要求を最適化する必要がある。
空間構造は従来は正則格子で近似していたが,本手法は道路網をグラフで表現し,基盤となる幾何学的構造をよりよく反映する。
動的リソース割り当てはマルチエージェント強化学習として定式化され、その作用値関数(Q関数)はグラフニューラルネットワークで近似される。
我々は,グラフ上に深いQ-networks(DQN)を持つ確率的ポリシー更新ルールを使用し,欲求的なポリシー更新よりも優れた結果を得る。
経験的なタクシー通話データをエミュレートする現実的なシミュレータを設計し,提案モデルの有効性を各種条件下で確認する。
関連論文リスト
- Towards a graph-based foundation model for network traffic analysis [3.0558245652654907]
基礎モデルはネットワークトラフィックの複雑さを把握でき、最小限の微調整で特定のタスクや環境に適応できる。
従来のアプローチではトークン化ヘックスレベルのパケットデータを使用していた。
本稿では,フローレベルでグラフベースの新しい代替案を提案する。
論文 参考訳(メタデータ) (2024-09-12T15:04:34Z) - A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in
Next-gen Networks [1.1586742546971471]
次世代ネットワークは、トラフィックダイナミクスに基づいたネットワーク構成を自動化し、適応的に調整する必要がある。
交通政策を決定する伝統的な手法は、通常は手作りのプログラミング最適化とアルゴリズムに基づいている。
我々は適応的なトラフィックルーティングのための深層強化学習(DRL)アプローチを開発する。
論文 参考訳(メタデータ) (2024-02-07T01:48:29Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
モバイルネットワークの規模は、手作業による介入や手作業による戦略を使ってアンテナパラメータの最適化を困難にしている。
本研究では,モバイルネットワーク構成をグローバルに最適化するマルチエージェント強化学習アルゴリズムを提案する。
シミュレーション環境におけるアンテナ傾き調整問題とジョイント傾き・電力制御問題に対するアルゴリズムの性能を実証的に示す。
論文 参考訳(メタデータ) (2023-01-20T17:06:34Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
我々は,無線通信網におけるエネルギー効率を最大化する新しいグラフ要約フレームワークを開発した。
無線ネットワークデータのモデルに望ましい特性である置換訓練について述べる。
結果は、異なるネットワークトポロジにまたがる一般化可能性を示している。
論文 参考訳(メタデータ) (2022-01-27T20:23:24Z) - Coordinated Reinforcement Learning for Optimizing Mobile Networks [6.924083445159127]
数百の協調エージェントを含む複雑なアプリケーションにおいて、協調グラフと強化学習の使い方を示す。
協調強化学習が他の手法より優れていることを実証的に示す。
論文 参考訳(メタデータ) (2021-09-30T14:46:18Z) - Dynamic Graph Convolutional Recurrent Network for Traffic Prediction:
Benchmark and Solution [18.309299822858243]
DGCRN(Dynamic Graph Contemporal Recurrent Network)と呼ばれる新しい交通予測フレームワークを提案する。
DGCRNでは、ハイパーネットワークはノード属性から動的特性を活用して抽出するように設計されている。
我々は、各時間ステップで動的グラフの細かい反復をモデル化する生成法を最初に採用した。
論文 参考訳(メタデータ) (2021-04-30T11:25:43Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。