論文の概要: Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks
- arxiv url: http://arxiv.org/abs/2201.11799v2
- Date: Mon, 17 Apr 2023 19:43:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 19:20:08.285470
- Title: Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks
- Title(参考訳): 無線ネットワークにおけるエネルギアウェア電力配分のためのグラフベースアルゴリズムの展開
- Authors: Boning Li, Gunjan Verma, Santiago Segarra
- Abstract要約: 我々は,無線通信網におけるエネルギー効率を最大化する新しいグラフ要約フレームワークを開発した。
無線ネットワークデータのモデルに望ましい特性である置換訓練について述べる。
結果は、異なるネットワークトポロジにまたがる一般化可能性を示している。
- 参考スコア(独自算出の注目度): 27.600081147252155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a novel graph-based trainable framework to maximize the weighted
sum energy efficiency (WSEE) for power allocation in wireless communication
networks. To address the non-convex nature of the problem, the proposed method
consists of modular structures inspired by a classical iterative suboptimal
approach and enhanced with learnable components. More precisely, we propose a
deep unfolding of the successive concave approximation (SCA) method. In our
unfolded SCA (USCA) framework, the originally preset parameters are now
learnable via graph convolutional neural networks (GCNs) that directly exploit
multi-user channel state information as the underlying graph adjacency matrix.
We show the permutation equivariance of the proposed architecture, which is a
desirable property for models applied to wireless network data. The USCA
framework is trained through a stochastic gradient descent approach using a
progressive training strategy. The unsupervised loss is carefully devised to
feature the monotonic property of the objective under maximum power
constraints. Comprehensive numerical results demonstrate its generalizability
across different network topologies of varying size, density, and channel
distribution. Thorough comparisons illustrate the improved performance and
robustness of USCA over state-of-the-art benchmarks.
- Abstract(参考訳): 本稿では,無線通信ネットワークにおける電力割当のための重み付き和エネルギー効率(wsee)を最大化するためのグラフベーストレーサブルフレームワークを開発した。
この問題の非凸性に対処するため,提案手法は古典的反復的準最適アプローチに着想を得て,学習可能なコンポーネントで拡張されたモジュラ構造からなる。
より正確には、逐次凹凸近似(SCA)法の深い展開を提案する。
拡張SCA(USCA)フレームワークでは、元のプリセットパラメータは、マルチユーザチャネル状態情報を基礎となるグラフ隣接行列として直接活用するグラフ畳み込みニューラルネットワーク(GCN)を介して学習可能になった。
無線ネットワークデータに適用するモデルにとって望ましい特性である,提案アーキテクチャの置換同値性を示す。
USCAフレームワークは、プログレッシブトレーニング戦略を用いて確率勾配降下法を用いて訓練される。
教師なし損失は、最大出力制約下での目標の単調特性を特徴付けるために慎重に考案される。
包括的数値計算により、サイズ、密度、チャネル分布の異なるネットワークトポロジーにまたがる一般化性が示される。
詳細な比較は、最先端のベンチマークよりもUSCAのパフォーマンスと堅牢性が改善されたことを示している。
関連論文リスト
- GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
本研究は,多忠実度アプリケーションのための新しい分解能不変モデルオーダー削減戦略を提案する。
我々はこの研究で開発された新しいニューラルネットワーク層、グラフフィードフォワードネットワークに基づいてアーキテクチャを構築した。
パラメトリックな偏微分方程式に対する自己エンコーダに基づく還元戦略において,異なるメッシュサイズでのトレーニングとテストの能力を利用する。
論文 参考訳(メタデータ) (2024-06-05T18:31:37Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
モバイルネットワークの規模は、手作業による介入や手作業による戦略を使ってアンテナパラメータの最適化を困難にしている。
本研究では,モバイルネットワーク構成をグローバルに最適化するマルチエージェント強化学習アルゴリズムを提案する。
シミュレーション環境におけるアンテナ傾き調整問題とジョイント傾き・電力制御問題に対するアルゴリズムの性能を実証的に示す。
論文 参考訳(メタデータ) (2023-01-20T17:06:34Z) - Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks [29.23937571816269]
グラフエッジ上での協調ビームフォーミングを学習するためのエッジグラフニューラルネットワーク(Edge-GNN)を提案する。
提案したEdge-GNNは、最先端の手法よりも計算時間をはるかに短くして、より高い和率を達成する。
論文 参考訳(メタデータ) (2022-11-23T02:05:06Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Solving AC Power Flow with Graph Neural Networks under Realistic
Constraints [3.114162328765758]
本稿では,現実的な制約下での交流電力流問題の解法として,グラフニューラルネットワークアーキテクチャを提案する。
本稿では,グラフニューラルネットワークを用いて電力フローの物理的制約を学習するフレームワークの開発を実演する。
論文 参考訳(メタデータ) (2022-04-14T14:49:34Z) - Contrastive Adaptive Propagation Graph Neural Networks for Efficient
Graph Learning [65.08818785032719]
グラフネットワーク(GNN)は、構造認識特徴の抽出と伝播によってグラフデータの処理に成功している。
近年,地域と高階の双方からなる拡張された隣人を直接扱えるように,近隣住民に焦点を絞った局所的伝播計画から拡張的伝播計画へと発展してきた。
優れた性能にもかかわらず、既存のアプローチは、局所的および高次隣人の影響を適応的に調整できる効率的で学習可能な拡張伝搬スキームを構築するのにはまだ不十分である。
論文 参考訳(メタデータ) (2021-12-02T10:35:33Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
本稿では、オブジェクト分類タスクにおける消失勾配を低減するために、SIReを定義したインターレース型マルチタスク学習戦略を提案する。
提案手法は、自動エンコーダを介して入力画像構造を保存することにより、畳み込みニューラルネットワーク(CNN)を直接改善する。
提案手法を検証するため、SIRe戦略を介して単純なCNNと有名なネットワークの様々な実装を拡張し、CIFAR100データセットで広範囲にテストする。
論文 参考訳(メタデータ) (2021-10-06T13:54:49Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
本稿では,時間変動トポロジに対する電力制御政策の迅速な適応を可能にする高レベル問題について検討する。
我々は,新しいネットワーク構成への数ショット適応を最適化するために,複数のトポロジのデータに一階のメタラーニングを適用した。
論文 参考訳(メタデータ) (2021-05-02T12:43:10Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
動的グラフネットワーク(DG-Net)は完全な有向非巡回グラフであり、ノードは畳み込みブロックを表し、エッジは接続経路を表す。
ネットワークの同じパスを使用する代わりに、DG-Netは各ノードの機能を動的に集約する。
論文 参考訳(メタデータ) (2020-10-02T16:50:26Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。