Toward Trainability of Quantum Neural Networks
- URL: http://arxiv.org/abs/2011.06258v2
- Date: Sat, 5 Dec 2020 04:06:40 GMT
- Title: Toward Trainability of Quantum Neural Networks
- Authors: Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, Dacheng Tao
- Abstract summary: Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
- Score: 87.04438831673063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Neural Networks (QNNs) have been recently proposed as generalizations
of classical neural networks to achieve the quantum speed-up. Despite the
potential to outperform classical models, serious bottlenecks exist for
training QNNs; namely, QNNs with random structures have poor trainability due
to the vanishing gradient with rate exponential to the input qubit number. The
vanishing gradient could seriously influence the applications of large-size
QNNs. In this work, we provide a viable solution with theoretical guarantees.
Specifically, we prove that QNNs with tree tensor and step controlled
architectures have gradients that vanish at most polynomially with the qubit
number. We numerically demonstrate QNNs with tree tensor and step controlled
structures for the application of binary classification. Simulations show
faster convergent rates and better accuracy compared to QNNs with random
structures.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Quantum Recurrent Neural Networks for Sequential Learning [11.133759363113867]
We propose a new kind of quantum recurrent neural network (QRNN) to find quantum advantageous applications in the near term.
Our QRNN is built by stacking the QRBs in a staggered way that can greatly reduce the algorithm's requirement with regard to the coherent time of quantum devices.
The numerical experiments show that our QRNN achieves much better performance in prediction (classification) accuracy against the classical RNN and state-of-the-art QNN models for sequential learning.
arXiv Detail & Related papers (2023-02-07T04:04:39Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Toward Trainability of Deep Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) with random structures have poor trainability due to the exponentially vanishing gradient as the circuit depth and the qubit number increase.
We provide the first viable solution to the vanishing gradient problem for deep QNNs with theoretical guarantees.
arXiv Detail & Related papers (2021-12-30T10:27:08Z) - Exponentially Many Local Minima in Quantum Neural Networks [9.442139459221785]
Quantum Neural Networks (QNNs) are important quantum applications because of their similar promises as classical neural networks.
We conduct a quantitative investigation on the landscape of loss functions of QNNs and identify a class of simple yet extremely hard QNN instances for training.
We empirically confirm that our constructions can indeed be hard instances in practice with typical gradient-based circuits.
arXiv Detail & Related papers (2021-10-06T03:23:44Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Absence of Barren Plateaus in Quantum Convolutional Neural Networks [0.0]
Quantum Convolutional Neural Networks (QCNNs) have been proposed.
We rigorously analyze the gradient scaling for the parameters in the QCNN architecture.
arXiv Detail & Related papers (2020-11-05T16:46:13Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Trainability of Dissipative Perceptron-Based Quantum Neural Networks [0.8258451067861933]
We analyze the gradient scaling (and hence the trainability) for a recently proposed architecture that we called dissipative QNNs (DQNNs)
We find that DQNNs can exhibit barren plateaus, i.e., gradients that vanish exponentially in the number of qubits.
arXiv Detail & Related papers (2020-05-26T00:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.