Quantum Recurrent Neural Networks for Sequential Learning
- URL: http://arxiv.org/abs/2302.03244v1
- Date: Tue, 7 Feb 2023 04:04:39 GMT
- Title: Quantum Recurrent Neural Networks for Sequential Learning
- Authors: Yanan Li, Zhimin Wang, Rongbing Han, Shangshang Shi, Jiaxin Li, Ruimin
Shang, Haiyong Zheng, Guoqiang Zhong, Yongjian Gu
- Abstract summary: We propose a new kind of quantum recurrent neural network (QRNN) to find quantum advantageous applications in the near term.
Our QRNN is built by stacking the QRBs in a staggered way that can greatly reduce the algorithm's requirement with regard to the coherent time of quantum devices.
The numerical experiments show that our QRNN achieves much better performance in prediction (classification) accuracy against the classical RNN and state-of-the-art QNN models for sequential learning.
- Score: 11.133759363113867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum neural network (QNN) is one of the promising directions where the
near-term noisy intermediate-scale quantum (NISQ) devices could find
advantageous applications against classical resources. Recurrent neural
networks are the most fundamental networks for sequential learning, but up to
now there is still a lack of canonical model of quantum recurrent neural
network (QRNN), which certainly restricts the research in the field of quantum
deep learning. In the present work, we propose a new kind of QRNN which would
be a good candidate as the canonical QRNN model, where, the quantum recurrent
blocks (QRBs) are constructed in the hardware-efficient way, and the QRNN is
built by stacking the QRBs in a staggered way that can greatly reduce the
algorithm's requirement with regard to the coherent time of quantum devices.
That is, our QRNN is much more accessible on NISQ devices. Furthermore, the
performance of the present QRNN model is verified concretely using three
different kinds of classical sequential data, i.e., meteorological indicators,
stock price, and text categorization. The numerical experiments show that our
QRNN achieves much better performance in prediction (classification) accuracy
against the classical RNN and state-of-the-art QNN models for sequential
learning, and can predict the changing details of temporal sequence data. The
practical circuit structure and superior performance indicate that the present
QRNN is a promising learning model to find quantum advantageous applications in
the near term.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
Quantum machine learning, focusing on quantum neural networks (QNNs), remains a vastly uncharted field of study.
We introduce a bona fide QNN model, which seamlessly aligns with the versatility of a traditional FFNN in terms of its adaptable intermediate layers and nodes.
We test our proposed model on various benchmarking datasets such as the diagnostic breast cancer (Wisconsin) and credit card fraud detection datasets.
arXiv Detail & Related papers (2024-02-01T15:13:26Z) - Reservoir Computing via Quantum Recurrent Neural Networks [0.5999777817331317]
Existing VQC or QNN-based methods require significant computational resources to perform gradient-based optimization of quantum circuit parameters.
In this work, we approach sequential modeling by applying a reservoir computing (RC) framework to quantum recurrent neural networks (QRNN-RC)
Our numerical simulations show that the QRNN-RC can reach results comparable to fully trained QRNN models for several function approximation and time series tasks.
arXiv Detail & Related papers (2022-11-04T17:30:46Z) - Scalable Quantum Convolutional Neural Networks [12.261689483681145]
We propose a new version of quantum neural network (QCNN) named scalable quantum convolutional neural network (sQCNN)
In addition, using the fidelity of QC, we propose an sQCNN training algorithm named reverse fidelity training (RF-Train) that maximizes the performance of sQCNN.
arXiv Detail & Related papers (2022-09-26T02:07:00Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network.
The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case.
The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts.
arXiv Detail & Related papers (2021-09-20T12:41:50Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
We benchmark fully parameterized quantum convolutional neural networks (QCNNs) for classical data classification.
We propose a quantum neural network model inspired by CNN that only uses two-qubit interactions throughout the entire algorithm.
arXiv Detail & Related papers (2021-08-02T06:48:34Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.