Learning to Segment Dynamic Objects using SLAM Outliers
- URL: http://arxiv.org/abs/2011.06259v1
- Date: Thu, 12 Nov 2020 08:36:54 GMT
- Title: Learning to Segment Dynamic Objects using SLAM Outliers
- Authors: Adrian Bojko, Romain Dupont, Mohamed Tamaazousti and Herv\'e Le Borgne
- Abstract summary: We present a method to automatically learn to segment dynamic objects using SLAM outliers.
It requires only one monocular sequence per dynamic object for training and consists in localizing dynamic objects using SLAM outliers, creating their masks, and using these masks to train a semantic segmentation network.
- Score: 5.4310785842119795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method to automatically learn to segment dynamic objects using
SLAM outliers. It requires only one monocular sequence per dynamic object for
training and consists in localizing dynamic objects using SLAM outliers,
creating their masks, and using these masks to train a semantic segmentation
network. We integrate the trained network in ORB-SLAM 2 and LDSO. At runtime we
remove features on dynamic objects, making the SLAM unaffected by them. We also
propose a new stereo dataset and new metrics to evaluate SLAM robustness. Our
dataset includes consensus inversions, i.e., situations where the SLAM uses
more features on dynamic objects that on the static background. Consensus
inversions are challenging for SLAM as they may cause major SLAM failures. Our
approach performs better than the State-of-the-Art on the TUM RGB-D dataset in
monocular mode and on our dataset in both monocular and stereo modes.
Related papers
- NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic environments [9.706447888754614]
We present NID-SLAM, which significantly improves the performance of neural SLAM in dynamic environments.
We propose a new approach to enhance inaccurate regions in semantic masks, particularly in marginal areas.
We also introduce a selection strategy for dynamic scenes, which enhances camera tracking robustness against large-scale objects.
arXiv Detail & Related papers (2024-01-02T12:35:03Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - NeuSE: Neural SE(3)-Equivariant Embedding for Consistent Spatial
Understanding with Objects [53.111397800478294]
We present NeuSE, a novel Neural SE(3)-Equivariant Embedding for objects.
NeuSE serves as a compact point cloud surrogate for complete object models.
Our proposed SLAM paradigm, using NeuSE for object shape and pose characterization, can operate independently or in conjunction with typical SLAM systems.
arXiv Detail & Related papers (2023-03-13T17:30:43Z) - Real-time SLAM Pipeline in Dynamics Environment [0.0]
We are presenting a solution which use RGB-D SLAM as well as YOLO real-time object detection to segment and remove dynamic scene and then construct static scene 3D.
We gathered a dataset which allows us to jointly consider semantics, geometry, and physics and thus enables us to reconstruct the static scene while filtering out all dynamic objects.
arXiv Detail & Related papers (2023-03-04T00:08:52Z) - Self-Improving SLAM in Dynamic Environments: Learning When to Mask [5.4310785842119795]
We propose a novel SLAM that learns when masking objects improves its performance in dynamic scenarios.
We do not make any priors on motion: our method learns to mask moving objects by itself.
Our method reaches the state of the art on the TUM RGB-D dataset and outperforms it on KITTI and ConsInv datasets.
arXiv Detail & Related papers (2022-10-15T18:06:06Z) - Using Detection, Tracking and Prediction in Visual SLAM to Achieve
Real-time Semantic Mapping of Dynamic Scenarios [70.70421502784598]
RDS-SLAM can build semantic maps at object level for dynamic scenarios in real time using only one commonly used Intel Core i7 CPU.
We evaluate RDS-SLAM in TUM RGB-D dataset, and experimental results show that RDS-SLAM can run with 30.3 ms per frame in dynamic scenarios.
arXiv Detail & Related papers (2022-10-10T11:03:32Z) - MOTSLAM: MOT-assisted monocular dynamic SLAM using single-view depth
estimation [5.33931801679129]
MOTSLAM is a dynamic visual SLAM system with the monocular configuration that tracks both poses and bounding boxes of dynamic objects.
Our experiments on the KITTI dataset demonstrate that our system has reached best performance on both camera ego-motion and object tracking on monocular dynamic SLAM.
arXiv Detail & Related papers (2022-10-05T06:07:10Z) - D$^3$FlowSLAM: Self-Supervised Dynamic SLAM with Flow Motion Decomposition and DINO Guidance [61.14088096348959]
We introduce a self-supervised deep SLAM method that robustly operates in dynamic scenes while accurately identifying dynamic components.
We propose a dynamic update module based on this representation and develop a dense SLAM system that excels in dynamic scenarios.
arXiv Detail & Related papers (2022-07-18T17:47:39Z) - NICE-SLAM: Neural Implicit Scalable Encoding for SLAM [112.6093688226293]
NICE-SLAM is a dense SLAM system that incorporates multi-level local information by introducing a hierarchical scene representation.
Compared to recent neural implicit SLAM systems, our approach is more scalable, efficient, and robust.
arXiv Detail & Related papers (2021-12-22T18:45:44Z) - DOT: Dynamic Object Tracking for Visual SLAM [83.69544718120167]
DOT combines instance segmentation and multi-view geometry to generate masks for dynamic objects.
To determine which objects are actually moving, DOT segments first instances of potentially dynamic objects and then, with the estimated camera motion, tracks such objects by minimizing the photometric reprojection error.
Our results show that our approach improves significantly the accuracy and robustness of ORB-SLAM 2, especially in highly dynamic scenes.
arXiv Detail & Related papers (2020-09-30T18:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.