NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic environments
- URL: http://arxiv.org/abs/2401.01189v2
- Date: Thu, 16 May 2024 14:19:52 GMT
- Title: NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic environments
- Authors: Ziheng Xu, Jianwei Niu, Qingfeng Li, Tao Ren, Chen Chen,
- Abstract summary: We present NID-SLAM, which significantly improves the performance of neural SLAM in dynamic environments.
We propose a new approach to enhance inaccurate regions in semantic masks, particularly in marginal areas.
We also introduce a selection strategy for dynamic scenes, which enhances camera tracking robustness against large-scale objects.
- Score: 9.706447888754614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural implicit representations have been explored to enhance visual SLAM algorithms, especially in providing high-fidelity dense map. Existing methods operate robustly in static scenes but struggle with the disruption caused by moving objects. In this paper we present NID-SLAM, which significantly improves the performance of neural SLAM in dynamic environments. We propose a new approach to enhance inaccurate regions in semantic masks, particularly in marginal areas. Utilizing the geometric information present in depth images, this method enables accurate removal of dynamic objects, thereby reducing the probability of camera drift. Additionally, we introduce a keyframe selection strategy for dynamic scenes, which enhances camera tracking robustness against large-scale objects and improves the efficiency of mapping. Experiments on publicly available RGB-D datasets demonstrate that our method outperforms competitive neural SLAM approaches in tracking accuracy and mapping quality in dynamic environments.
Related papers
- V3D-SLAM: Robust RGB-D SLAM in Dynamic Environments with 3D Semantic Geometry Voting [1.3493547928462395]
Simultaneous localization and mapping (SLAM) in highly dynamic environments is challenging due to the correlation between moving objects and the camera pose.
We propose a robust method, V3D-SLAM, to remove moving objects via two lightweight re-evaluation stages.
Our experiment on the TUM RGB-D benchmark on dynamic sequences with ground-truth camera trajectories showed that our methods outperform the most recent state-of-the-art SLAM methods.
arXiv Detail & Related papers (2024-10-15T21:08:08Z) - Learn to Memorize and to Forget: A Continual Learning Perspective of Dynamic SLAM [17.661231232206028]
Simultaneous localization and mapping (SLAM) with implicit neural representations has received extensive attention.
We propose a novel SLAM framework for dynamic environments.
arXiv Detail & Related papers (2024-07-18T09:35:48Z) - DDN-SLAM: Real-time Dense Dynamic Neural Implicit SLAM [5.267859554944985]
We introduce DDN-SLAM, the first real-time dense dynamic neural implicit SLAM system integrating semantic features.
Compared to existing neural implicit SLAM systems, the tracking results on dynamic datasets indicate an average 90% improvement in Average Trajectory Error (ATE) accuracy.
arXiv Detail & Related papers (2024-01-03T05:42:17Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
Implicit neural SLAM has achieved remarkable progress recently.
Existing methods face significant challenges in non-ideal scenarios.
We propose EN-SLAM, the first event-RGBD implicit neural SLAM framework.
arXiv Detail & Related papers (2023-11-18T08:48:58Z) - DynaMoN: Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields [71.94156412354054]
We propose Dynamic Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields (DynaMoN)
DynaMoN handles dynamic content for initial camera pose estimation and statics-focused ray sampling for fast and accurate novel-view synthesis.
We extensively evaluate our approach on two real-world dynamic datasets, the TUM RGB-D dataset and the BONN RGB-D Dynamic dataset.
arXiv Detail & Related papers (2023-09-16T08:46:59Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
High dynamic range imaging aims to retrieve information from multiple low-dynamic range inputs to generate realistic output.
Existing methods often focus on the spatial misalignment across input frames caused by the foreground and/or camera motion.
We propose a novel alignment-free network with a Semantics Consistent Transformer (SCTNet) with both spatial and channel attention modules.
arXiv Detail & Related papers (2023-05-29T15:03:23Z) - Point-SLAM: Dense Neural Point Cloud-based SLAM [61.96492935210654]
We propose a dense neural simultaneous localization and mapping (SLAM) approach for monocular RGBD input.
We demonstrate that both tracking and mapping can be performed with the same point-based neural scene representation.
arXiv Detail & Related papers (2023-04-09T16:48:26Z) - DOT: Dynamic Object Tracking for Visual SLAM [83.69544718120167]
DOT combines instance segmentation and multi-view geometry to generate masks for dynamic objects.
To determine which objects are actually moving, DOT segments first instances of potentially dynamic objects and then, with the estimated camera motion, tracks such objects by minimizing the photometric reprojection error.
Our results show that our approach improves significantly the accuracy and robustness of ORB-SLAM 2, especially in highly dynamic scenes.
arXiv Detail & Related papers (2020-09-30T18:36:28Z) - FlowFusion: Dynamic Dense RGB-D SLAM Based on Optical Flow [17.040818114071833]
We present a novel dense RGB-D SLAM solution that simultaneously accomplishes the dynamic/static segmentation and camera ego-motion estimation.
Our novelty is using optical flow residuals to highlight the dynamic semantics in the RGB-D point clouds.
arXiv Detail & Related papers (2020-03-11T04:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.