Using Detection, Tracking and Prediction in Visual SLAM to Achieve
Real-time Semantic Mapping of Dynamic Scenarios
- URL: http://arxiv.org/abs/2210.04562v1
- Date: Mon, 10 Oct 2022 11:03:32 GMT
- Title: Using Detection, Tracking and Prediction in Visual SLAM to Achieve
Real-time Semantic Mapping of Dynamic Scenarios
- Authors: Xingyu Chen, Jianru Xue, Jianwu Fang, Yuxin Pan and Nanning Zheng
- Abstract summary: RDS-SLAM can build semantic maps at object level for dynamic scenarios in real time using only one commonly used Intel Core i7 CPU.
We evaluate RDS-SLAM in TUM RGB-D dataset, and experimental results show that RDS-SLAM can run with 30.3 ms per frame in dynamic scenarios.
- Score: 70.70421502784598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a lightweight system, RDS-SLAM, based on ORB-SLAM2,
which can accurately estimate poses and build semantic maps at object level for
dynamic scenarios in real time using only one commonly used Intel Core i7 CPU.
In RDS-SLAM, three major improvements, as well as major architectural
modifications, are proposed to overcome the limitations of ORB-SLAM2. Firstly,
it adopts a lightweight object detection neural network in key frames.
Secondly, an efficient tracking and prediction mechanism is embedded into the
system to remove the feature points belonging to movable objects in all
incoming frames. Thirdly, a semantic octree map is built by probabilistic
fusion of detection and tracking results, which enables a robot to maintain a
semantic description at object level for potential interactions in dynamic
scenarios. We evaluate RDS-SLAM in TUM RGB-D dataset, and experimental results
show that RDS-SLAM can run with 30.3 ms per frame in dynamic scenarios using
only an Intel Core i7 CPU, and achieves comparable accuracy compared with the
state-of-the-art SLAM systems which heavily rely on both Intel Core i7 CPUs and
powerful GPUs.
Related papers
- IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian Splatting has recently shown promising results as an alternative scene representation in SLAM systems.
We present IG-SLAM, a dense RGB-only SLAM system that employs robust Dense-SLAM methods for tracking and combines them with Gaussian Splatting.
We demonstrate competitive performance with state-of-the-art RGB-only SLAM systems while achieving faster operation speeds.
arXiv Detail & Related papers (2024-08-02T09:07:31Z) - NIS-SLAM: Neural Implicit Semantic RGB-D SLAM for 3D Consistent Scene Understanding [31.56016043635702]
We introduce NIS-SLAM, an efficient neural implicit semantic RGB-D SLAM system.
For high-fidelity surface reconstruction and spatial consistent scene understanding, we combine high-frequency multi-resolution tetrahedron-based features.
We also show that our approach can be used in augmented reality applications.
arXiv Detail & Related papers (2024-07-30T14:27:59Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
We propose an online 3D semantic segmentation method that incrementally reconstructs a 3D semantic map from a stream of RGB-D frames.
Unlike offline methods, ours is directly applicable to scenarios with real-time constraints, such as robotics or mixed reality.
arXiv Detail & Related papers (2023-11-29T20:30:18Z) - 3DS-SLAM: A 3D Object Detection based Semantic SLAM towards Dynamic
Indoor Environments [1.4901625182926226]
We introduce 3DS-SLAM, 3D Semantic SLAM, tailored for dynamic scenes with visual 3D object detection.
The 3DS-SLAM is a tightly-coupled algorithm resolving both semantic and geometric constraints sequentially.
It exhibits an average improvement of 98.01% across the dynamic sequences of the TUM RGB-D dataset.
arXiv Detail & Related papers (2023-10-10T07:48:40Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - TwistSLAM++: Fusing multiple modalities for accurate dynamic semantic
SLAM [0.0]
TwistSLAM++ is a semantic, dynamic, SLAM system that fuses stereo images and LiDAR information.
We show on classical benchmarks that this fusion approach based on multimodal information improves the accuracy of object tracking.
arXiv Detail & Related papers (2022-09-16T12:28:21Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z) - DOT: Dynamic Object Tracking for Visual SLAM [83.69544718120167]
DOT combines instance segmentation and multi-view geometry to generate masks for dynamic objects.
To determine which objects are actually moving, DOT segments first instances of potentially dynamic objects and then, with the estimated camera motion, tracks such objects by minimizing the photometric reprojection error.
Our results show that our approach improves significantly the accuracy and robustness of ORB-SLAM 2, especially in highly dynamic scenes.
arXiv Detail & Related papers (2020-09-30T18:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.