論文の概要: Natural Language Processing to Detect Cognitive Concerns in Electronic
Health Records Using Deep Learning
- arxiv url: http://arxiv.org/abs/2011.06489v1
- Date: Thu, 12 Nov 2020 16:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 07:08:24.143247
- Title: Natural Language Processing to Detect Cognitive Concerns in Electronic
Health Records Using Deep Learning
- Title(参考訳): 深層学習を用いた電子健康記録の認知的問題検出のための自然言語処理
- Authors: Zhuoqiao Hong, Colin G. Magdamo, Yi-han Sheu, Prathamesh Mohite, Ayush
Noori, Elissa M. Ye, Wendong Ge, Haoqi Sun, Laura Brenner, Gregory Robbins,
Shibani Mukerji, Sahar Zafar, Nicole Benson, Lidia Moura, John Hsu, Bradley
T. Hyman, Michael B. Westover, Deborah Blacker, Sudeshna Das
- Abstract要約: 認知症はコミュニティでは認識が低く、医療専門家では診断が低く、クレームデータではコード化されていない。
認知機能障害に関する情報は、医療記録の未構造化の診療ノートにしばしば見られるが、専門家による手作業によるレビューは時間がかかり、しばしばエラーを起こしやすい。
電子カルテにおける認知的関心を持つ患者を識別するために,自然言語処理アルゴリズムを適用した。
- 参考スコア(独自算出の注目度): 0.970914263240787
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dementia is under-recognized in the community, under-diagnosed by healthcare
professionals, and under-coded in claims data. Information on cognitive
dysfunction, however, is often found in unstructured clinician notes within
medical records but manual review by experts is time consuming and often prone
to errors. Automated mining of these notes presents a potential opportunity to
label patients with cognitive concerns who could benefit from an evaluation or
be referred to specialist care. In order to identify patients with cognitive
concerns in electronic medical records, we applied natural language processing
(NLP) algorithms and compared model performance to a baseline model that used
structured diagnosis codes and medication data only. An attention-based deep
learning model outperformed the baseline model and other simpler models.
- Abstract(参考訳): 認知症はコミュニティでは認識が低く、医療専門家では診断が低く、クレームデータではコード化されていない。
しかし、認知機能障害に関する情報は、医療記録の未構造化の診療ノートにしばしば見られるが、専門家による手作業によるレビューは時間がかかり、しばしばエラーを起こす。
これらのノートの自動マイニングは、評価や専門的ケアの恩恵を受けることができる認知的関心を持つ患者をラベル付けする潜在的機会を示す。
電子カルテにおける認知的関心を持つ患者を特定するため,自然言語処理(NLP)アルゴリズムを適用し,構造化診断符号と医薬データのみを用いたベースラインモデルと比較した。
注意に基づくディープラーニングモデルは、ベースラインモデルや他の単純なモデルよりも優れています。
関連論文リスト
- Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
言語基底タスク(NL-DAR)の文脈における診断誘導推論(DAR)について検討する。
パール構造因果モデルに基づくNL-DARの新しいモデリングフレームワークを提案する。
得られたデータセットを用いて,NL-DARにおける人間の意思決定過程を解析する。
論文 参考訳(メタデータ) (2024-09-09T06:55:37Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - LLMs Accelerate Annotation for Medical Information Extraction [7.743388571513413]
本稿では,LLM(Large Language Models)と人間の専門知識を組み合わせた手法を提案する。
医療情報抽出タスクにおいて,我々の手法を厳格に評価し,我々のアプローチが人的介入を大幅に削減するだけでなく,高い精度を維持していることを示す。
論文 参考訳(メタデータ) (2023-12-04T19:26:13Z) - Conceptualizing Machine Learning for Dynamic Information Retrieval of
Electronic Health Record Notes [6.1656026560972]
本研究は、特定の臨床コンテキストにおける注記関連性の監督源として、機械学習におけるEHR監査ログの使用を概念化したものである。
本手法は,個々のノート作成セッションでどのノートが読み込まれるかを予測するために0.963のAUCを実現できることを示す。
論文 参考訳(メタデータ) (2023-08-09T21:04:19Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language
Processing [5.022185333260402]
診断推論ベンチマーク(DR.BENCH)は臨床診断推論能力を持つcNLPモデルの開発と評価のための新しいベンチマークである。
DR.BENCHは、訓練済みの言語モデルを評価するための自然言語生成フレームワークとして設計された最初の臨床スイートである。
論文 参考訳(メタデータ) (2022-09-29T16:05:53Z) - NeuraHealthNLP: An Automated Screening Pipeline to Detect Undiagnosed
Cognitive Impairment in Electronic Health Records with Deep Learning and
Natural Language Processing [0.0]
認知症の症例の75%は世界中で診断されず、低所得国と中所得国で90%に達する。
現在の診断方法は非常に複雑で、医療ノートのマニュアルレビュー、多くの認知検査、高価な脳スキャン、脊髄液検査などが含まれる。
このプロジェクトでは、HRの未検出認知症をスケーラブルかつ高速に発見するための、最先端の自動スクリーニングパイプラインを開発する。
論文 参考訳(メタデータ) (2022-01-12T06:19:14Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Using Deep Learning to Identify Patients with Cognitive Impairment in
Electronic Health Records [0.0]
認知症に苦しむ患者は4人に1人しかいない。
認知症は医療専門家によって診断されていない。
ディープラーニングNLPは、認知症に関連するICDコードや薬品なしで認知症患者を識別できる。
論文 参考訳(メタデータ) (2021-11-13T01:44:10Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。