Quantum algorithm for nonlinear differential equations
- URL: http://arxiv.org/abs/2011.06571v2
- Date: Mon, 21 Dec 2020 16:22:08 GMT
- Title: Quantum algorithm for nonlinear differential equations
- Authors: Seth Lloyd, Giacomo De Palma, Can Gokler, Bobak Kiani, Zi-Wen Liu,
Milad Marvian, Felix Tennie, Tim Palmer
- Abstract summary: We present a quantum algorithm for the solution of nonlinear differential equations.
Potential applications include the Navier-Stokes equation, plasma hydrodynamics, epidemiology, and more.
- Score: 12.386348820609626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers are known to provide an exponential advantage over
classical computers for the solution of linear differential equations in
high-dimensional spaces. Here, we present a quantum algorithm for the solution
of nonlinear differential equations. The quantum algorithm provides an
exponential advantage over classical algorithms for solving nonlinear
differential equations. Potential applications include the Navier-Stokes
equation, plasma hydrodynamics, epidemiology, and more.
Related papers
- H-DES: a Quantum-Classical Hybrid Differential Equation Solver [0.0]
We introduce an original hybrid quantum-classical algorithm for solving systems of differential equations.
The algorithm relies on a spectral method, which involves encoding the solution functions in the amplitudes of the quantum states generated by different parametrized circuits.
arXiv Detail & Related papers (2024-10-01T23:47:41Z) - Solving nonlinear differential equations on Quantum Computers: A
Fokker-Planck approach [5.0401589279256065]
We propose to transform a nonlinear dynamical system into a linear system, which we integrate with quantum algorithms.
Key to the method is the Fokker-Planck equation, which is a non-normal partial differential equation.
We emulate the integration of nonlinear systems with the proposed quantum solvers, and compare the output with the benchmark solutions of classical equations.
arXiv Detail & Related papers (2024-01-24T14:48:55Z) - Improving Pseudo-Time Stepping Convergence for CFD Simulations With
Neural Networks [44.99833362998488]
Navier-Stokes equations may exhibit a highly nonlinear behavior.
The system of nonlinear equations resulting from the discretization of the Navier-Stokes equations can be solved using nonlinear iteration methods, such as Newton's method.
In this paper, pseudo-transient continuation is employed in order to improve nonlinear convergence.
arXiv Detail & Related papers (2023-10-10T15:45:19Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Quantum algorithm for time-dependent differential equations using Dyson series [0.0]
We provide a quantum algorithm for solving time-dependent linear differential equations with logarithmic dependence of the complexity on the error and derivative.
Our method is to encode the Dyson series in a system of linear equations, then solve via the optimal quantum linear equation solver.
arXiv Detail & Related papers (2022-12-07T09:50:40Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Quantum homotopy perturbation method for nonlinear dissipative ordinary
differential equations [0.25782420501870296]
We propose a quantum algorithm for solving $n$-dimensional nonlinear dissipative ordinary differential equations (ODEs)
Our algorithm provides exponential improvement over the best classical algorithms or previous quantum algorithms in $n$ or $epsilon$.
arXiv Detail & Related papers (2021-11-15T01:34:43Z) - Quantum Model-Discovery [19.90246111091863]
Quantum algorithms for solving differential equations have shown a provable advantage in the fault-tolerant quantum computing regime.
We extend the applicability of near-term quantum computers to more general scientific machine learning tasks.
Our results show a promising path to Quantum Model Discovery (QMoD) on the interface between classical and quantum machine learning approaches.
arXiv Detail & Related papers (2021-11-11T18:45:52Z) - Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems [40.20472268839781]
We generalize the reaction-diffusion equation in statistical physics, Schr"odinger equation in quantum mechanics, Helmholtz equation in paraxial optics.
We take finite difference method to discretize NPDE for finding numerical solution.
Basic building blocks of deep neural network architecture, including multi-layer perceptron, convolutional neural network and recurrent neural networks, are generated.
arXiv Detail & Related papers (2021-03-10T00:05:46Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
We describe a method for mapping any finite nonlinear dynamical system to an infinite linear dynamical system (embedding)
We then explore an approach for approximating the resulting infinite linear system with finite linear systems (truncation)
arXiv Detail & Related papers (2020-12-12T00:01:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.