Fast quantum interconnects via constant-rate entanglement distillation
- URL: http://arxiv.org/abs/2408.15936v1
- Date: Wed, 28 Aug 2024 16:54:54 GMT
- Title: Fast quantum interconnects via constant-rate entanglement distillation
- Authors: Christopher A. Pattison, Gefen Baranes, J. Pablo Bonilla Ataides, Mikhail D. Lukin, Hengyun Zhou,
- Abstract summary: We develop constant-rate entanglement distillation methods for quantum interconnects.
We prove the scheme has constant-rate in expectation and numerically optimize to achieve low practical overhead.
We find our optimized schemes outperform existing computationally efficient quantum interconnect schemes by an order of magnitude in relevant regimes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed quantum computing allows the modular construction of large-scale quantum computers and enables new protocols for blind quantum computation. However, such applications in the large-scale, fault-tolerant regime place stringent demands on the fidelity and rate of entanglement generation which are not met by existing methods for quantum interconnects. In this work, we develop constant-rate entanglement distillation methods to address this bottleneck in the setting of noisy local operations. By using a sequence of two-way entanglement distillation protocols based on quantum error detecting codes with increasing rate, and combining with standard fault tolerance techniques, we achieve constant-rate entanglement distillation. We prove the scheme has constant-rate in expectation and further numerically optimize to achieve low practical overhead subject to memory constraints. We find our optimized schemes outperform existing computationally efficient quantum interconnect schemes by an order of magnitude in relevant regimes, leading to a direct speed-up in the execution of distributed quantum algorithms.
Related papers
- Codesigned counterdiabatic quantum optimization on a photonic quantum processor [6.079051215256144]
We focus on the counterdiabatic protocol with a codesigned approach to implement this algorithm on a photonic quantum processor.
We develop and implement an optimized counterdiabatic method by tackling the higher-order many-body interaction terms.
We experimentally demonstrate the advantages of a codesigned mapping of counterdiabatic quantum dynamics for quantum computing on photonic platforms.
arXiv Detail & Related papers (2024-09-26T15:08:19Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Benchmarking multi-qubit gates -- I: Metrological aspects [0.0]
benchmarking hardware errors in quantum computers has drawn significant attention lately.
Existing benchmarks for digital quantum computers involve averaging the global fidelity over a large set of quantum circuits.
We develop a new figure-of-merit suitable for multi-qubit quantum gates based on the reduced Choi matrix.
arXiv Detail & Related papers (2022-10-09T19:36:21Z) - Multistate Transition Dynamics by Strong Time-Dependent Perturbation in
NISQ era [0.0]
We develop a quantum computing scheme utilizing McLachlan variational principle in a hybrid quantum-classical algorithm.
Results for transition probabilities are obtained with accuracy better than 1%, as established by comparison to the benchmark data.
arXiv Detail & Related papers (2021-12-13T00:49:15Z) - Mitigated barren plateaus in the time-nonlocal optimization of analog
quantum-algorithm protocols [0.0]
algorithmic classes such as variational quantum algorithms have been shown to suffer from barren plateaus.
We present an approach to quantum algorithm optimization that is based on trainable Fourier coefficients of Hamiltonian system parameters.
arXiv Detail & Related papers (2021-11-15T21:13:10Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.