DIRL: Domain-Invariant Representation Learning for Sim-to-Real Transfer
- URL: http://arxiv.org/abs/2011.07589v3
- Date: Thu, 7 Jan 2021 06:08:20 GMT
- Title: DIRL: Domain-Invariant Representation Learning for Sim-to-Real Transfer
- Authors: Ajay Kumar Tanwani
- Abstract summary: We present a domain-invariant representation learning (DIRL) algorithm to adapt deep models to the physical environment with a small amount of real data.
Experiments on digit domains yield state-of-the-art performance on challenging benchmarks.
- Score: 2.119586259941664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating large-scale synthetic data in simulation is a feasible alternative
to collecting/labelling real data for training vision-based deep learning
models, albeit the modelling inaccuracies do not generalize to the physical
world. In this paper, we present a domain-invariant representation learning
(DIRL) algorithm to adapt deep models to the physical environment with a small
amount of real data. Existing approaches that only mitigate the covariate shift
by aligning the marginal distributions across the domains and assume the
conditional distributions to be domain-invariant can lead to ambiguous transfer
in real scenarios. We propose to jointly align the marginal (input domains) and
the conditional (output labels) distributions to mitigate the covariate and the
conditional shift across the domains with adversarial learning, and combine it
with a triplet distribution loss to make the conditional distributions disjoint
in the shared feature space. Experiments on digit domains yield
state-of-the-art performance on challenging benchmarks, while sim-to-real
transfer of object recognition for vision-based decluttering with a mobile
robot improves from 26.8 % to 91.0 %, resulting in 86.5 % grasping accuracy of
a wide variety of objects. Code and supplementary details are available at
https://sites.google.com/view/dirl
Related papers
- xTED: Cross-Domain Adaptation via Diffusion-Based Trajectory Editing [21.37585797507323]
Cross-domain policy transfer methods mostly aim at learning domain correspondences or corrections to facilitate policy learning.
We propose the Cross-Domain Trajectory EDiting framework that employs a specially designed diffusion model for cross-domain trajectory adaptation.
Our proposed model architecture effectively captures the intricate dependencies among states, actions, and rewards, as well as the dynamics patterns within target data.
arXiv Detail & Related papers (2024-09-13T10:07:28Z) - Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling [4.33404822906643]
Semi-supervised domain adaptation methods leverage information from a source labelled domain to generalize over a scarcely labelled target domain.
Such a setting is denoted as Semi-Supervised Heterogeneous Domain Adaptation (SSHDA)
We introduce SHeDD (Semi-supervised Heterogeneous Domain Adaptation via Disentanglement) an end-to-end neural framework tailored to learning a target domain.
arXiv Detail & Related papers (2024-06-20T08:02:49Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - VisDA-2021 Competition Universal Domain Adaptation to Improve
Performance on Out-of-Distribution Data [64.91713686654805]
The Visual Domain Adaptation (VisDA) 2021 competition tests models' ability to adapt to novel test distributions.
We will evaluate adaptation to novel viewpoints, backgrounds, modalities and degradation in quality.
Performance will be measured using a rigorous protocol, comparing to state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-07-23T03:21:51Z) - Learning Domain Invariant Representations by Joint Wasserstein Distance
Minimization [3.382067152367334]
Domain shifts in the training data are common in practical applications of machine learning.
Ideally, a ML model should work well independently of these shifts, for example, by learning a domain-invariant representation.
Common ML losses do not give strong guarantees on how consistently the ML model performs for different domains.
arXiv Detail & Related papers (2021-06-09T09:08:51Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.