Analog Circuit Design with Dyna-Style Reinforcement Learning
- URL: http://arxiv.org/abs/2011.07665v1
- Date: Mon, 16 Nov 2020 00:19:25 GMT
- Title: Analog Circuit Design with Dyna-Style Reinforcement Learning
- Authors: Wook Lee, Frans A. Oliehoek
- Abstract summary: We present a learning based approach to analog circuit design, where the goal is to optimize circuit performance subject to certain design constraints.
We propose a method with two key properties. First, it learns a reward model, i.e., surrogate model of the performance approximated by neural networks, to reduce the required number of simulation.
Second, it uses a policy generator to explore the diverse solution space satisfying constraints. The results show that, compared to the model-free method applied with 20,000 circuit simulations to train the policy, DynaOpt achieves even much better performance by learning from scratch with only 500 simulations.
- Score: 12.232323973906773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a learning based approach to analog circuit design,
where the goal is to optimize circuit performance subject to certain design
constraints. One of the aspects that makes this problem challenging to
optimize, is that measuring the performance of candidate configurations with
simulation can be computationally expensive, particularly in the post-layout
design. Additionally, the large number of design constraints and the
interaction between the relevant quantities makes the problem complex.
Therefore, to better facilitate supporting the human designers, it is desirable
to gain knowledge about the whole space of feasible solutions. In order to
tackle these challenges, we take inspiration from model-based reinforcement
learning and propose a method with two key properties. First, it learns a
reward model, i.e., surrogate model of the performance approximated by neural
networks, to reduce the required number of simulation. Second, it uses a
stochastic policy generator to explore the diverse solution space satisfying
constraints. Together we combine these in a Dyna-style optimization framework,
which we call DynaOpt, and empirically evaluate the performance on a circuit
benchmark of a two-stage operational amplifier. The results show that, compared
to the model-free method applied with 20,000 circuit simulations to train the
policy, DynaOpt achieves even much better performance by learning from scratch
with only 500 simulations.
Related papers
- Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute.
The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem.
Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.
arXiv Detail & Related papers (2023-12-06T18:20:46Z) - Diffusion Generative Inverse Design [28.04683283070957]
Inverse design refers to the problem of optimizing the input of an objective function in order to enact a target outcome.
Recent developments in learned graph neural networks (GNNs) can be used for accurate, efficient, differentiable estimation of simulator dynamics.
We show how denoising diffusion diffusion models can be used to solve inverse design problems efficiently and propose a particle sampling algorithm for further improving their efficiency.
arXiv Detail & Related papers (2023-09-05T08:32:07Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
tensor networks and decision diagrams have independently been developed with differing perspectives, terminologies, and backgrounds in mind.
We consider how these techniques approach classical quantum circuit simulation, and examine their (dis)similarities with regard to their most applicable abstraction level.
We provide guidelines for when to better use tensor networks and when to better use decision diagrams in classical quantum circuit simulation.
arXiv Detail & Related papers (2023-02-13T19:00:00Z) - Data efficient surrogate modeling for engineering design: Ensemble-free
batch mode deep active learning for regression [0.6021787236982659]
We propose a simple and scalable approach for active learning that works in a student-teacher manner to train a surrogate model.
By using this proposed approach, we are able to achieve the same level of surrogate accuracy as the other baselines like DBAL and Monte Carlo sampling.
arXiv Detail & Related papers (2022-11-16T02:31:57Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - An Actor-Critic Method for Simulation-Based Optimization [6.261751912603047]
We focus on a simulation-based optimization problem of choosing the best design from the feasible space.
We formulate the sampling process as a policy searching problem and give a solution from the perspective of Reinforcement Learning (RL)
Some experiments are designed to validate the effectiveness of proposed algorithms.
arXiv Detail & Related papers (2021-10-31T09:04:23Z) - Data-Driven Offline Optimization For Architecting Hardware Accelerators [89.68870139177785]
We develop a data-driven offline optimization method for designing hardware accelerators, dubbed PRIME.
PRIME improves performance upon state-of-the-art simulation-driven methods by about 1.54x and 1.20x, while considerably reducing the required total simulation time by 93% and 99%, respectively.
In addition, PRIME also architects effective accelerators for unseen applications in a zero-shot setting, outperforming simulation-based methods by 1.26x.
arXiv Detail & Related papers (2021-10-20T17:06:09Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
A robust topology optimization (RTO) problem identifies a design with the best average performance.
A neural network method is proposed that offers computational efficiency.
Numerical application of the method is shown on the robust design of L-bracket structure with single point load as well as multiple point loads.
arXiv Detail & Related papers (2021-07-19T20:40:51Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.