Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems
- URL: http://arxiv.org/abs/2105.02396v1
- Date: Thu, 6 May 2021 02:22:23 GMT
- Title: Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems
- Authors: Blake A. Wilson, Zhaxylyk A. Kudyshev, Alexander V. Kildishev, Sabre
Kais, Vladimir M. Shalaev, and Alexandra Boltasseva
- Abstract summary: We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
- Score: 101.18253437732933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, there is a growing interest in using quantum computers for
solving combinatorial optimization problems. In this work, we developed a
generic, machine learning-based framework for mapping continuous-space inverse
design problems into surrogate quadratic unconstrained binary optimization
(QUBO) problems by employing a binary variational autoencoder and a
factorization machine. The factorization machine is trained as a
low-dimensional, binary surrogate model for the continuous design space and
sampled using various QUBO samplers. Using the D-Wave Advantage hybrid sampler
and simulated annealing, we demonstrate that by repeated resampling and
retraining of the factorization machine, our framework finds designs that
exhibit figures of merit exceeding those of its training set. We showcase the
framework's performance on two inverse design problems by optimizing (i)
thermal emitter topologies for thermophotovoltaic applications and (ii)
diffractive meta-gratings for highly efficient beam steering. This technique
can be further scaled to leverage future developments in quantum optimization
to solve advanced inverse design problems for science and engineering
applications.
Related papers
- Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
We show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario.
We follow by submitting instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios.
arXiv Detail & Related papers (2024-06-11T19:59:05Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Energy Efficiency Maximization in IRS-Aided Cell-Free Massive MIMO
System [2.9081408997650375]
In this paper, we consider an intelligent reflecting surface (IRS)-aided cell-free massive multiple-input multiple-output system, where the beamforming at access points and the phase shifts at IRSs are jointly optimized to maximize energy efficiency (EE)
To solve EE problem, we propose an iterative optimization algorithm by using quadratic transform and Lagrangian dual transform to find the optimum beamforming and phase shifts.
We further propose a deep learning based approach for joint beamforming and phase shifts design. Specifically, a two-stage deep neural network is trained offline using the unsupervised learning manner, which is then deployed online for
arXiv Detail & Related papers (2022-12-24T14:58:15Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Quantum topology optimization of ground structures using noisy
intermediate-scale quantum devices [8.325359814939517]
We study the usage of quantum computers as a potential solution to topology optimization problems.
Several experiments, including a real device experiment, show that the proposed method successfully obtained the optimal configurations.
arXiv Detail & Related papers (2022-07-19T10:39:28Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.